View source: R/multivariate_constructors.R
Multivariate.Lognormal.Distribution | R Documentation |
Create a Multivariate Log-Normal Distribution Object
Multivariate.Lognormal.Distribution(
mu = rep(0, nrow(sigma)),
sigma = diag(rep(1, length(mu))),
lower = 0,
upper = Inf,
var.names = NULL
)
mu , sigma |
The mean vector and covariance matrix of the distribution (after log transformation) |
lower , upper |
The upper and lower bounds for each variable (on the original scale, NOT the log scale). If only one value is given, assumed to apply to all variables in the distribution |
var.names |
The names of the variables in the distribution. If NULL, uses the names of mu, the row names of sigma, or the column names of sigma, in that order |
Other Distribution Constructors:
Autoregressive.Multivariate.Normal.Distribution()
,
Bernoulli.Distribution()
,
Beta.Distribution()
,
Binomial.Distribution()
,
Canonical.Mixture.Distribution()
,
Compound.Symmetry.Multivariate.Normal.Distribution()
,
Constant.Distribution()
,
Discrete.Set.Distribution()
,
Empiric.Distribution()
,
Logitnormal.Distribution()
,
Logitnormal.Mixture()
,
Logituniform.Distribution()
,
Lognormal.Distribution()
,
Lognormal.Mixture()
,
Loguniform.Distribution()
,
Multivariate.Correlated.Uniform.Distribution()
,
Multivariate.Logitnormal.Distribution()
,
Multivariate.Normal.Distribution()
,
Normal.Distribution()
,
Normal.Mixture()
,
Smoothed.Empiric.Distribution()
,
Transformed.Multivariate.Normal.Distribution()
,
Transformed.Normal.Distribution()
,
Transformed.Normal.Mixture()
,
Uniform.Distribution()
,
Univariate.Canonical.Distribution()
,
join.distributions()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.