View source: R/multivariate_constructors.R
Transformed.Multivariate.Normal.Distribution | R Documentation |
Creates a distribution where all the variables, after arbitrary transformations, follow a normal distribution
Transformed.Multivariate.Normal.Distribution(
mu = rep(0, nrow(sigma)),
sigma = diag(rep(1, length(mu))),
lower = -Inf,
upper = Inf,
var.names = NULL,
transformations = NULL
)
mu , sigma |
The mean vector and covariance matrix of the distribution (after transformations) |
lower , upper |
The upper and lower bounds for each variable (on the original scale, NOT the transformed scale). If only one value is given, assumed to apply to all variables in the distribution |
var.names |
The names of the variables in the distribution. If NULL, uses the names of mu, the row names of sigma, or the column names of sigma, in that order |
transformations |
Objects of class transformation to be applied to each variable. Can be either an object of class transformation, the character name of a defined transformation, or a list of transformation objects. If only one transformation is supplied, assumed to apply to all variables. If this is a named list, any variables missing transformation are assmed to not be transformed |
Other Distribution Constructors:
Autoregressive.Multivariate.Normal.Distribution()
,
Bernoulli.Distribution()
,
Beta.Distribution()
,
Binomial.Distribution()
,
Canonical.Mixture.Distribution()
,
Compound.Symmetry.Multivariate.Normal.Distribution()
,
Constant.Distribution()
,
Discrete.Set.Distribution()
,
Empiric.Distribution()
,
Logitnormal.Distribution()
,
Logitnormal.Mixture()
,
Logituniform.Distribution()
,
Lognormal.Distribution()
,
Lognormal.Mixture()
,
Loguniform.Distribution()
,
Multivariate.Correlated.Uniform.Distribution()
,
Multivariate.Logitnormal.Distribution()
,
Multivariate.Lognormal.Distribution()
,
Multivariate.Normal.Distribution()
,
Normal.Distribution()
,
Normal.Mixture()
,
Smoothed.Empiric.Distribution()
,
Transformed.Normal.Distribution()
,
Transformed.Normal.Mixture()
,
Uniform.Distribution()
,
Univariate.Canonical.Distribution()
,
join.distributions()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.