View source: R/canonical_mixture_constructors.R
Transformed.Normal.Mixture | R Documentation |
Creates a mixture of distributions representing random variables that are normal after transformation (eg, mixture of normals, log-normals, logit-normals, etc.)
Transformed.Normal.Mixture(
means = 0,
sds = 1,
weights = 1,
transformation = NULL,
lower = -Inf,
upper = Inf,
var.name = NULL
)
means , sds |
The means and standard deviations of each component of the mixture (after transformation has been applied) |
weights |
The weights applied to each component of the mixture. Weights need not be normalized to sum to 1. If a scalar value is given, all components of the mixture will have the same weight |
lower , upper |
The lower and the upper bounds, if this is a bounded distribution. The bounds are on the ORIGINAL scale (before transformation). The same bounds apply for all components of the mixture |
Other Canonical Mixture Distribution Constructors:
Logitnormal.Mixture()
,
Lognormal.Mixture()
,
Normal.Mixture()
Other Distribution Constructors:
Autoregressive.Multivariate.Normal.Distribution()
,
Bernoulli.Distribution()
,
Beta.Distribution()
,
Binomial.Distribution()
,
Canonical.Mixture.Distribution()
,
Compound.Symmetry.Multivariate.Normal.Distribution()
,
Constant.Distribution()
,
Discrete.Set.Distribution()
,
Empiric.Distribution()
,
Logitnormal.Distribution()
,
Logitnormal.Mixture()
,
Logituniform.Distribution()
,
Lognormal.Distribution()
,
Lognormal.Mixture()
,
Loguniform.Distribution()
,
Multivariate.Correlated.Uniform.Distribution()
,
Multivariate.Logitnormal.Distribution()
,
Multivariate.Lognormal.Distribution()
,
Multivariate.Normal.Distribution()
,
Normal.Distribution()
,
Normal.Mixture()
,
Smoothed.Empiric.Distribution()
,
Transformed.Multivariate.Normal.Distribution()
,
Transformed.Normal.Distribution()
,
Uniform.Distribution()
,
Univariate.Canonical.Distribution()
,
join.distributions()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.