Univariate.Canonical.Distribution: Create a distribution object based off of a canonical,...

View source: R/univariate_canonical_distribution.R

Univariate.Canonical.DistributionR Documentation

Create a distribution object based off of a canonical, univariate distribution

Usage

Univariate.Canonical.Distribution(
  name,
  dist.name,
  parameters,
  var.name = NULL,
  support = Continuous.Support(),
  density.function.name = paste0("d", dist.name),
  cdf.function.name = paste0("p", dist.name),
  quantile.function.name = paste0("q", dist.name),
  transformation = NULL,
  is.improper = F,
  mean.value = as.numeric(NA),
  variance.value = as.numeric(NA)
)

Arguments

name

A short, descriptive name for the distribution

dist.name

The root name of the distribution as used by d/r/p functions in R. For example, to create a normal distribution, dist.name='norm' (like dnorm, rnorm, pnorm). To create a beta distribution, dist.name='beta' (dbeta, rbeta, qbeta). This argument is only necessary if density.function, cdf.function, and quantile.function are not passed explicitly

parameters

A list of parameters that would be passed to d/r/p functions in R. For example, for a normal(0,1), parameters=list(mean=0, sd=1)

var.name

The name of the variable in this distribution

support

A support object that

transformation

A transformation object, if the named distribution operates on a transformation of the random variable (can also pass NULL for no transformation or the name of a predefined transformation - see get.defined.transformation). For example, to create a log-normal distribution, use dist.name='norm' with transformation='log

is.improper

Logicals indicating whether the distribution is improper/discrete

mean.value, variance

If known, these values will be returned for calls to get.means, get.sds, get.covariance.matrix. If passed NA, random sampling will be used to estimate distribution parameters if requested

density.function, cdf.function, quantile.function

The functions that calculate the density, cdf, and quantile respectively. These should take the standard parameters of such functions in R. density.function should take 'x', distribution-specific parameters, and 'log'. cdf.function should take 'q', distribution-specific parameters, 'lower.tail' and 'log.p'. quantile.function should take 'p', distribution-specific parameters, and 'lower.tail' and 'log.p'

See Also

get.defined.transformation, create.transformation

Other Univariate Canonical Distribution Constructors: Bernoulli.Distribution(), Beta.Distribution(), Binomial.Distribution(), Canonical.Mixture.Distribution(), Logitnormal.Distribution(), Logituniform.Distribution(), Lognormal.Distribution(), Loguniform.Distribution(), Normal.Distribution(), Transformed.Normal.Distribution(), Uniform.Distribution()

Other Distribution Constructors: Autoregressive.Multivariate.Normal.Distribution(), Bernoulli.Distribution(), Beta.Distribution(), Binomial.Distribution(), Canonical.Mixture.Distribution(), Compound.Symmetry.Multivariate.Normal.Distribution(), Constant.Distribution(), Discrete.Set.Distribution(), Empiric.Distribution(), Logitnormal.Distribution(), Logitnormal.Mixture(), Logituniform.Distribution(), Lognormal.Distribution(), Lognormal.Mixture(), Loguniform.Distribution(), Multivariate.Correlated.Uniform.Distribution(), Multivariate.Logitnormal.Distribution(), Multivariate.Lognormal.Distribution(), Multivariate.Normal.Distribution(), Normal.Distribution(), Normal.Mixture(), Smoothed.Empiric.Distribution(), Transformed.Multivariate.Normal.Distribution(), Transformed.Normal.Distribution(), Transformed.Normal.Mixture(), Uniform.Distribution(), join.distributions()


tfojo1/distributions documentation built on July 27, 2024, 3:29 p.m.