#' Brings out the must read articles from the top news search results
#' @param company_name name of the company
#' @export
#' @return character
#' @import tidytext
#' @import dplyr
#' @import lexicon
#' @examples
#' which_article("Debenhams")
#' which_article("Vodafone")
which_article <- function(company_name){
articles <- get_articles(company_name)
text <- tibble(text=articles, article = 1:10)
tidy_articles <- text %>%
unnest_tokens(word, text)
library(tidytext)
data(stop_words)
tidy_articles <- tidy_articles %>%
anti_join(stop_words)
library(lexicon)
data(hash_sentiment_loughran_mcdonald)
names(hash_sentiment_loughran_mcdonald)[1] <- "word"
names(hash_sentiment_loughran_mcdonald)[2] <- "sentiment"
hash_sentiment_loughran_mcdonald$sentiment=ifelse(hash_sentiment_loughran_mcdonald$sentiment==1,"positive", "negative")
sentiments <- hash_sentiment_loughran_mcdonald
with_sentiment <- tidy_articles %>%
inner_join(sentiments)
with_sentiment$positive=with_sentiment$sentiment==1
with_sentiment <- with_sentiment %>%
group_by(article) %>%
summarise(positive = sum(positive==TRUE), negative=-n()+positive, sentiment=positive-negative)
with_sentiment$warning <- with_sentiment$negative<mean(with_sentiment$negative)
links<-get_links(company_name)
return(links[with_sentiment$warning==TRUE])
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.