Description Usage Arguments Value References See Also Examples
sMIS scaled according to M4 Forecasting competition (see references)
1 |
data |
time series (only train set) |
actual |
actual values (Equivalent of upper/lower) |
lower |
lower bound of prediction interval |
upper |
upper bound of prediction interval |
m |
frequency, e.g. 12 for monthly and 4 for quarterly series |
level |
level used for prediction interval construction |
numeric vector of length 1
Svetunkov, I., Sagaert, Y. R. (2020). greybox: Toolbox for Model Building and Forecasting. https://cran.r-project.org/package=greybox
Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102(477), 359–378. https://doi.org/10.1198/016214506000001437
Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2020). The M4 Competition: 100,000 time series and 61 forecasting methods. International Journal of Forecasting, 36(1), 54–74. https://doi.org/10.1016/j.ijforecast.2019.04.014
Other PI accuracy measures:
acd()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | data <- tsRNN::fc_arima[key == "actual", value]
forecast <- tsRNN::fc_arima[key == "predict", value]
data_train <- data[1:(length(data) - length(forecast))]
data_test <- data[(length(data) - length(forecast) + 1):length(data)]
lower <- tsRNN::fc_arima[key == "predict", lo95]
upper <- tsRNN::fc_arima[key == "predict", hi95]
tsRNN::smis(
data = data_train,
actual = data_test,
lower = lower,
upper = upper,
m = 4,
level = 0.95
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.