ts_nn_preparation: Timeseries data preparation for neural network Keras models

Description Usage Arguments Value Examples

View source: R/ts_nn_preparation.R

Description

The following steps are proceeded:

Usage

1
2
3
4
5
6
7
8
ts_nn_preparation(
  data,
  tsteps,
  length_val = 16L,
  length_test = 8L,
  value_col = "value",
  value_lag_col = "value_lag"
)

Arguments

data

balanced univariate time series as data.table object. Lagged columns in the form value_lagX required, where X represents number of lag

tsteps

number of lagged time steps

length_val

length of validation set

length_test

length of test set

value_col

name of column with value to prepare

value_lag_col

name of lagged value column(s) to prepare, searched by starting pattern. E.g. value_lag_col = "value_lag" will catch column "value_lag" and "value_lag1" but not "2_value_lag"

Value

list of "X" and "Y" each containing "train", "val" and "test" arrays

Examples

1
2
3
4
5
6
7
data <- tsRNN::DT_apple

data[, value_lag1 := data.table::shift(value, type = "lag", n = 1)]
data[, value_lag2 := data.table::shift(value, type = "lag", n = 2)]
data <- data[!is.na(get(paste0("value_lag2")))]

ts_nn_preparation(data, tsteps = 2L, length_val = 6L, length_test = 6L)

thfuchs/tsRNN documentation built on April 17, 2021, 11:03 p.m.