This class holds the a blueprint for a functional model, i.e.,
an unparameterized function model. Such a model is defined by a
function f which accepts one scalar input x and a
parameterization vector par and returns an output scalar y.
The model depends on the parameterization par, which will later be
subject to optimization to make the function f(x, par) fit to a
model dataset (x, y).
fthe model function, taking as parameters a value x followed by
a parameter vector par
estimatoris a function which takes in a vector of x and a
vector of y values and returns an estimate of the parameters, or NULL
if no estimate can be made better than just standard random numbers
gradienta function which takes in a value x and par and
returns a vector with the gradient for each parameter dimension
paramCountthe number of model parameters
paramLowerthe lower bounds for the parameters, or NULL if none
are required. An element of the vector may be set of NA if no lower
limit for that limit is specified (while lower limits are given for other
parameter values).
paramUpperthe upper bounds for the parameters, or NULL if none
are required. An element of the vector may be set of NA if no lower
upper for that limit is specified (while upper limits are given for other
parameter values).
namea textual name of the model
FunctionalModel.new
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.