# make the default list
#' @include smoothSpline.R
#' @include linear.R
#' @include loess.R
.p.00 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
regressoR.trend.linear(metric, transformation.x, transformation.y, metric.transformed, protected=TRUE);
}
.p.01 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
if(is.null(metric@weights)) { return(NULL); }
regressoR.trend.linear(metric, transformation.x, transformation.y, metric.transformed,
protected=TRUE, weights=weights)
};
.p.08 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=TRUE,
all.knots=FALSE)};
.p.09 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=TRUE,
all.knots=TRUE)};
.p.10 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=TRUE,
all.knots=TRUE, df=length(metric@x))};
.p.12 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=TRUE,
all.knots=TRUE, df=max(1L, round(0.5*length(metric@x))))};
.p.14 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=TRUE,
all.knots=TRUE, spar=1)};
.p.16 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=TRUE,
all.knots=TRUE, spar=0.5)};
.p.18 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
if(is.null(metric@weights)) { return(NULL); }
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=TRUE, w=metric@weights,
all.knots=TRUE)
};
.p.19 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
if(is.null(metric@weights)) { return(NULL); }
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=TRUE, w=metric@weights,
all.knots=TRUE, df=length(metric@x))
};
.p.21 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
if(is.null(metric@weights)) { return(NULL); }
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=TRUE, w=metric@weights,
all.knots=TRUE, df=max(1L, round(0.5*length(metric@x))))
};
.p.23 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
if(is.null(metric@weights)) { return(NULL); }
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=TRUE, w=metric@weights,
all.knots=TRUE, spar=1)
};
.p.25 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
if(is.null(metric@weights)) { return(NULL); }
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=TRUE, w=metric@weights,
all.knots=TRUE, spar=0.5)
};
.np.00 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
regressoR.trend.linear(metric, transformation.x, transformation.y, metric.transformed, protected=FALSE)};
.np.01 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
if(is.null(metric@weights)) { return(NULL); }
regressoR.trend.linear(metric, transformation.x, transformation.y, metric.transformed,
protected=FALSE, weights=weights)
};
.np.08 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=FALSE,
all.knots=FALSE)};
.np.09 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=FALSE,
all.knots=TRUE)};
.np.10 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=FALSE,
all.knots=TRUE, df=length(metric@x))};
.np.12 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=FALSE,
all.knots=TRUE, df=max(1L, round(0.5*length(metric@x))));}
.np.14 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=FALSE,
all.knots=TRUE, spar=1)};
.np.16 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=FALSE,
all.knots=TRUE, spar=0.5)};
.np.18 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
if(is.null(metric@weights)) { return(NULL); }
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=FALSE, w=metric@weights,
all.knots=TRUE)
};
.np.19 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
if(is.null(metric@weights)) { return(NULL); }
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=FALSE, w=metric@weights,
all.knots=TRUE, df=length(metric@x))
};
.np.21 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
if(is.null(metric@weights)) { return(NULL); }
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=FALSE, w=metric@weights,
all.knots=TRUE, df=max(1L, round(0.5*length(metric@x))))
};
.np.23 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
if(is.null(metric@weights)) { return(NULL); }
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=FALSE, w=metric@weights,
all.knots=TRUE, spar=1)
};
.np.25 <- function(metric, transformation.x, transformation.y, metric.transformed, q) {
if(is.null(metric@weights)) { return(NULL); }
regressoR.spline.smooth(metric, transformation.x, transformation.y, metric.transformed,
protected=FALSE, w=metric@weights,
all.knots=TRUE, spar=0.5)
};
# get the protected splines
.protected <- c(.p.00,
.p.01,
.p.08,
.p.09,
.p.10,
.p.12,
.p.14,
.p.16,
.p.18,
.p.19,
.p.21,
.p.23,
.p.25);
#' @title Get the Default Protected Spline Fitters
#' @description Get the default fitters for protected splines, i.e., splines
#' which will remain constant before and after the first and last data point,
#' respectively.
#' @return the list of default protected splines
#' @export regressoR.spline.protected
regressoR.spline.protected <- function() .protected
# the set of default spline fitters
.default <- unlist(c(.protected,
.np.00,
.np.01,
.np.08,
.np.09,
.np.10,
.np.12,
.np.14,
.np.16,
.np.18,
.np.19,
.np.21,
.np.23,
.np.25));
#' @title Get the Default Spline Fitters
#' @description Get the default fitters for splines.
#' @return the list of default splines
#' @export regressoR.spline.default
regressoR.spline.default <- function() .default
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.