deep_logistic_local: Deep Learning Classification with Automated Parameter Tuning...

Usage Arguments

Usage

1
2
3
deep_logistic_local(x, y, num_layer, max_units, start_unit, max_dropout,
  min_dropout, max_lr, min_lr, iteration_per_layer, validation_split, num_epoch,
  num_patience)

Arguments

x

training feature matrix

y

target matrix

num_layer

a vector of integers indicating the number of hidden layers to test. Default to seq(1,5,1)

max_units

the maximum number of hidden units in a layer. Default to an optimized value based on data

start_unit

the minimum number of hiddent units in a layer. Default to 5

max_dropout

A number between 0 and 1 indicating the maximum dropoff rate in a layer. Default to 0.2

min_dropout

A number between 0 and 1 indicating the minimum dropoff rate in a layer. Default to 0

max_lr

maximum learning rate in a run. Default to 0.2

min_lr

minimum learning rate in a run. Default to 0.001

iteration_per_layer

Number of parameter randomizations for a given number of hidden layers. More iterations will explore a larger parameter space

validation_split \item

num_epochnumber of epoches to go through during training

\item

num_patiencenumber of patience in early stopping criteria

returns a list object with two values: train_performance: A table with parameters and model performance metrics best_model: a keras_model object with the optimal parameters Deep Learning Classification with Automated Parameter Tuning by Random Search


tianwei-zhang/easyAI documentation built on May 14, 2019, 12:48 p.m.