deep_ncf: Deep Learning Recommendation: Neural Collaborative Filtering

Description Usage Arguments Value

Description

Deep Learning Recommendation: Neural Collaborative Filtering

Usage

1
2
3
4
deep_ncf(data, num_layer = seq(1, 5, 1), max_units = 10, start_unit = 3,
  max_lr = 0.2, min_lr = 0.001, iteration_per_layer = 5,
  min_mf_output_dim = 2, max_mf_output_dim = 10, num_epoch = 2,
  top = 100)

Arguments

data

Transaction dataset. Format must be order_id (could be dummy), user_id, and product_id

num_layer

a vector of integers indicating the number of hidden layers to test. Default to seq(1,5,1)

max_units

the maximum number of hidden units in a layer. Default to 10

start_unit

the minimum number of hiddent units in a layer. Default to 3

max_lr

maximum learning rate in a run. Default to 0.2

min_lr

minimum learning rate in a run. Default to 0.001

iteration_per_layer

Number of parameter randomizations for a given number of hidden layers. More iterations will explore a larger parameter space

min_mf_output_dim

Min number of latent factors to represent users and items

max_mf_output_dim

Max number of latent factors to represent users and items

num_epoch

number of epoches to go through during training

top

Number of top products and customers to include. Can be NULL (e.g. will include everything)

Value

returns a list object with two values: train_performance: A table with parameters and model performance metrics best_model: a keras_model object with the optimal parameters


tianwei-zhang/easyAI documentation built on May 14, 2019, 12:48 p.m.