#' @templateVar class clm
#' @template title_desc_tidy
#'
#' @param x A `clm` object returned from [ordinal::clm()].
#' @template param_confint
#' @template param_exponentiate
#' @param conf.type Whether to use `"profile"` or `"Wald"` confidence
#' intervals, passed to the `type` argument of [ordinal::confint.clm()].
#' Defaults to `"profile"`.
#' @template param_unused_dots
#'
#' @examplesIf rlang::is_installed("ordinal")
#'
#' # load libraries for models and data
#' library(ordinal)
#'
#' # fit model
#' fit <- clm(rating ~ temp * contact, data = wine)
#'
#' # summarize model fit with tidiers
#' tidy(fit)
#' tidy(fit, conf.int = TRUE, conf.level = 0.9)
#' tidy(fit, conf.int = TRUE, conf.type = "Wald", exponentiate = TRUE)
#'
#' glance(fit)
#' augment(fit, type.predict = "prob")
#' augment(fit, type.predict = "class")
#'
#' # ...and again with another model specification
#' fit2 <- clm(rating ~ temp, nominal = ~contact, data = wine)
#'
#' tidy(fit2)
#' glance(fit2)
#'
#' @evalRd return_tidy(regression = TRUE)
#'
#' @details In `broom 0.7.0` the `coefficient_type` column was renamed to
#' `coef.type`, and the contents were changed as well.
#'
#' Note that `intercept` type coefficients correspond to `alpha`
#' parameters, `location` type coefficients correspond to `beta`
#' parameters, and `scale` type coefficients correspond to `zeta`
#' parameters.
#'
#' @aliases ordinal_tidiers
#' @export
#' @seealso [tidy], [ordinal::clm()], [ordinal::confint.clm()]
#' @family ordinal tidiers
tidy.clm <- function(x, conf.int = FALSE, conf.level = 0.95,
conf.type = c("profile", "Wald"), exponentiate = FALSE,
...) {
conf.type <- rlang::arg_match(conf.type)
ret <- as_tibble(coef(summary(x)), rownames = "term")
colnames(ret) <- c("term", "estimate", "std.error", "statistic", "p.value")
if (conf.int) {
ci <- broom_confint_terms(x, level = conf.level, type = conf.type)
ret <- dplyr::left_join(ret, ci, by = "term")
}
if (exponentiate) {
ret <- exponentiate(ret)
}
types <- c("alpha", "beta", "zeta")
new_types <- c("intercept", "location", "scale")
ret$coef.type <- rep(new_types, vapply(x[types], length, numeric(1)))
as_tibble(ret)
}
#' @templateVar class clm
#' @template title_desc_glance
#'
#' @inherit tidy.clm params examples
#'
#' @evalRd return_glance(
#' "edf",
#' "AIC",
#' "BIC",
#' "logLik",
#' "df.residual",
#' "nobs"
#' )
#'
#' @export
#' @seealso [tidy], [ordinal::clm()]
#' @family ordinal tidiers
glance.clm <- function(x, ...) {
as_glance_tibble(
edf = x$edf,
AIC = stats::AIC(x),
BIC = stats::BIC(x),
logLik = stats::logLik(x),
df.residual = stats::df.residual(x),
nobs = stats::nobs(x),
na_types = "irrrii"
)
}
#' @templateVar class clm
#' @template title_desc_augment
#'
#' @inherit tidy.clm params examples
#' @template param_data
#' @template param_newdata
#'
#' @param type.predict Which type of prediction to compute, either `"prob"`
#' or `"class"`, passed to [ordinal::predict.clm()]. Defaults to `"prob"`.
#'
#' @export
#' @seealso [tidy], [ordinal::clm()], [ordinal::predict.clm()]
#' @family ordinal tidiers
#'
augment.clm <- function(x, data = model.frame(x), newdata = NULL,
type.predict = c("prob", "class"), ...) {
type.predict <- rlang::arg_match(type.predict)
df <- if (is.null(newdata)) data else newdata
df <- as_augment_tibble(df)
df$.fitted <- predict(object = x, newdata = df, type = type.predict)$fit
df
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.