Code
class_test <- prep(step_lencode_bayes(recipe(x2 ~ ., data = ex_dat), x3,
outcome = vars(x2), verbose = FALSE, options = opts), training = ex_dat,
retain = TRUE)
Condition
Code
new_values_ch <- bake(class_test, new_data = new_dat_ch)
Condition
Warning in `bake()`:
! There was 1 column that was a factor when the recipe was prepped:
* `x3`
i This may cause errors when processing new data.
Code
class_test <- prep(step_lencode_bayes(recipe(x2 ~ ., data = ex_dat_ch), x3,
outcome = vars(x2), verbose = FALSE, options = opts, id = "id"), training = ex_dat_ch,
retain = TRUE, options = opts)
Condition
Code
set.seed(8283)
reg_test <- prep(step_lencode_bayes(recipe(x1 ~ ., data = ex_dat), x3, outcome = vars(
x1), verbose = FALSE, options = opts), training = ex_dat, retain = TRUE)
Condition
Code
new_values_ch <- bake(reg_test, new_data = new_dat_ch)
Condition
Warning in `bake()`:
! There was 1 column that was a factor when the recipe was prepped:
* `x3`
i This may cause errors when processing new data.
Code
set.seed(8283)
reg_test <- prep(step_lencode_bayes(recipe(x1 ~ ., data = ex_dat_ch), x3,
outcome = vars(x1), verbose = FALSE, options = opts), training = ex_dat_ch,
retain = TRUE)
Condition
Code
class_test <- prep(step_lencode_bayes(recipe(outcome ~ ., data = ex_dat_poisson),
x3, outcome = vars(outcome), verbose = FALSE, options = c(opts, family = stats::poisson)),
training = ex_dat_poisson, retain = TRUE)
Condition
Code
new_values_ch <- bake(class_test, new_data = new_dat_ch)
Condition
Warning in `bake()`:
! There was 1 column that was a factor when the recipe was prepped:
* `x3`
i This may cause errors when processing new data.
Code
class_test <- prep(step_lencode_bayes(recipe(x2 ~ ., data = ex_dat_cw), x3,
outcome = vars(x2), verbose = FALSE, options = opts), training = ex_dat_cw,
retain = TRUE)
Condition
Code
junk <- capture.output(ref_mod <- rstanarm::stan_glmer(formula = x2 ~ (1 |
value), data = transmute(ex_dat_cw, value = x3, x2), family = binomial(),
na.action = na.omit, seed = 34677, chains = 2, iter = 500, weights = wts_int, ))
Condition
Code
class_test
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 3
case_weights: 1
-- Training information
Training data contained 500 data points and no incomplete rows.
-- Operations
* Linear embedding for factors via Bayesian GLM for: x3 | Trained, weighted
Code
step_lencode_bayes(recipe(~., data = mtcars), outcome = vars(mpg), verbose = "yes")
Condition
Error in `step_lencode_bayes()`:
! `verbose` must be `TRUE` or `FALSE`, not the string "yes".
Code
bake(rec_trained, new_data = ex_dat[, -3])
Condition
Error in `step_lencode_bayes()`:
! The following required column is missing from `new_data`: x3.
Code
rec
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 10
-- Operations
* Linear embedding for factors via Bayesian GLM for: <none>
Code
rec
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 10
-- Training information
Training data contained 32 data points and no incomplete rows.
-- Operations
* Linear embedding for factors via Bayesian GLM for: <none> | Trained
Code
print(rec)
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 3
-- Operations
* Linear embedding for factors via Bayesian GLM for: x3
Code
prep(rec)
Condition
Message
-- Recipe ----------------------------------------------------------------------
-- Inputs
Number of variables by role
outcome: 1
predictor: 3
-- Training information
Training data contained 500 data points and no incomplete rows.
-- Operations
* Linear embedding for factors via Bayesian GLM for: x3 | Trained
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.