#' Centering numeric data
#'
#' `step_center()` creates a *specification* of a recipe step that will
#' normalize numeric data to have a mean of zero.
#'
#' @param recipe A recipe object. The step will be added to the
#' sequence of operations for this recipe.
#' @param ... One or more selector functions to choose variables
#' for this step. See [selections()] for more details.
#' @param role Not used by this step since no new variables are
#' created.
#' @param trained A logical to indicate if the quantities for
#' preprocessing have been estimated.
#' @param means A named numeric vector of means. This is
#' `NULL` until computed by [prep()].
#' @param na_rm A logical value indicating whether `NA`
#' values should be removed during computations.
#' @param skip A logical. Should the step be skipped when the
#' recipe is baked by [bake()]? While all operations are baked
#' when [prep()] is run, some operations may not be able to be
#' conducted on new data (e.g. processing the outcome variable(s)).
#' Care should be taken when using `skip = TRUE` as it may affect
#' the computations for subsequent operations.
#' @param id A character string that is unique to this step to identify it.
#' @template step-return
#'
#' @family normalization steps
#' @export
#' @details Centering data means that the average of a variable is
#' subtracted from the data. `step_center` estimates the
#' variable means from the data used in the `training`
#' argument of `prep.recipe`. `bake.recipe` then applies
#' the centering to new data sets using these means.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble is returned with
#' columns `terms`, `value`, and `id`:
#'
#' \describe{
#' \item{terms}{character, the selectors or variables selected}
#' \item{value}{numeric, the means}
#' \item{id}{character, id of this step}
#' }
#'
#' @template case-weights-unsupervised
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data(biomass, package = "modeldata")
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#'
#' rec <- recipe(
#' HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr
#' )
#'
#' center_trans <- rec %>%
#' step_center(carbon, contains("gen"), -hydrogen)
#'
#' center_obj <- prep(center_trans, training = biomass_tr)
#'
#' transformed_te <- bake(center_obj, biomass_te)
#'
#' biomass_te[1:10, names(transformed_te)]
#' transformed_te
#'
#' tidy(center_trans, number = 1)
#' tidy(center_obj, number = 1)
step_center <-
function(recipe,
...,
role = NA,
trained = FALSE,
means = NULL,
na_rm = TRUE,
skip = FALSE,
id = rand_id("center")) {
add_step(
recipe,
step_center_new(
terms = enquos(...),
trained = trained,
role = role,
means = means,
na_rm = na_rm,
skip = skip,
id = id,
case_weights = NULL
)
)
}
## Initializes a new object
step_center_new <-
function(terms, role, trained, means, na_rm, skip, id, case_weights) {
step(
subclass = "center",
terms = terms,
role = role,
trained = trained,
means = means,
na_rm = na_rm,
skip = skip,
id = id,
case_weights = case_weights
)
}
#' @export
prep.step_center <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("double", "integer"))
wts <- get_case_weights(info, training)
were_weights_used <- are_weights_used(wts, unsupervised = TRUE)
if (isFALSE(were_weights_used)) {
wts <- NULL
}
means <- averages(training[, col_names], wts, na_rm = x$na_rm)
inf_cols <- col_names[is.infinite(means)]
if (length(inf_cols) > 0) {
cli::cli_warn(
"Column{?s} {.var {inf_cols}} returned NaN. \\
Consider avoiding `Inf` values before normalising.")
}
step_center_new(
terms = x$terms,
role = x$role,
trained = TRUE,
means = means,
na_rm = x$na_rm,
skip = x$skip,
id = x$id,
case_weights = were_weights_used
)
}
#' @export
bake.step_center <- function(object, new_data, ...) {
col_names <- names(object$means)
check_new_data(col_names, object, new_data)
for (col_name in col_names) {
mean <- object$means[col_name]
new_data[[col_name]] <- new_data[[col_name]] - mean
}
new_data
}
#' @export
print.step_center <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Centering for "
print_step(names(x$means), x$terms, x$trained, title, width,
case_weights = x$case_weights)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_center <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = names(x$means),
value = unname(x$means)
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(
terms = term_names,
value = na_dbl
)
}
res$id <- x$id
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.