#' Impute numeric data below the threshold of measurement
#'
#' `step_impute_lower()` creates a *specification* of a recipe step designed for
#' cases where the non-negative numeric data cannot be measured below a known
#' value. In these cases, one method for imputing the data is to substitute the
#' truncated value by a random uniform number between zero and the truncation
#' point.
#'
#' @inheritParams step_center
#' @param threshold A named numeric vector of lower bounds. This is
#' `NULL` until computed by [prep()].
#' @template step-return
#' @family imputation steps
#' @export
#' @details `step_impute_lower` estimates the variable minimums
#' from the data used in the `training` argument of `prep.recipe`.
#' `bake.recipe` then simulates a value for any data at the minimum
#' with a random uniform value between zero and the minimum.
#'
#' As of `recipes` 0.1.16, this function name changed from `step_lowerimpute()`
#' to `step_impute_lower()`.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble is returned with
#' columns `terms`, `value` , and `id`:
#'
#' \describe{
#' \item{terms}{character, the selectors or variables selected}
#' \item{value}{numeric, the estimated value}
#' \item{id}{character, id of this step}
#' }
#'
#' @template case-weights-not-supported
#'
#' @examplesIf rlang::is_installed("modeldata")
#' library(recipes)
#' data(biomass, package = "modeldata")
#'
#' ## Truncate some values to emulate what a lower limit of
#' ## the measurement system might look like
#'
#' biomass$carbon <- ifelse(biomass$carbon > 40, biomass$carbon, 40)
#' biomass$hydrogen <- ifelse(biomass$hydrogen > 5, biomass$carbon, 5)
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#'
#' rec <- recipe(
#' HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr
#' )
#'
#' impute_rec <- rec %>%
#' step_impute_lower(carbon, hydrogen)
#'
#' tidy(impute_rec, number = 1)
#'
#' impute_rec <- prep(impute_rec, training = biomass_tr)
#'
#' tidy(impute_rec, number = 1)
#'
#' transformed_te <- bake(impute_rec, biomass_te)
#'
#' plot(transformed_te$carbon, biomass_te$carbon,
#' ylab = "pre-imputation", xlab = "imputed"
#' )
step_impute_lower <-
function(recipe,
...,
role = NA,
trained = FALSE,
threshold = NULL,
skip = FALSE,
id = rand_id("impute_lower")) {
add_step(
recipe,
step_impute_lower_new(
terms = enquos(...),
role = role,
trained = trained,
threshold = threshold,
skip = skip,
id = id
)
)
}
step_impute_lower_new <-
function(terms, role, trained, threshold, skip, id) {
step(
subclass = "impute_lower",
terms = terms,
role = role,
trained = trained,
threshold = threshold,
skip = skip,
id = id
)
}
#' @export
prep.step_impute_lower <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("double", "integer"))
threshold <- vapply(training[, col_names], min, numeric(1), na.rm = TRUE)
if (any(threshold < 0)) {
offenders <- col_names[threshold < 0]
cli::cli_abort(c(
x = "The following columns negative values: {offenders}.",
i = "Lower bound imputation is intended for data bounded at zero."
))
}
step_impute_lower_new(
terms = x$terms,
role = x$role,
trained = TRUE,
threshold = threshold,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_impute_lower <- function(object, new_data, ...) {
col_names <- names(object$threshold)
check_new_data(col_names, object, new_data)
for (col_name in col_names) {
threshold <- object$threshold[[col_name]]
affected <- which(new_data[[col_name]] <= threshold)
if (length(affected) > 0) {
new_data[[col_name]][affected] <- runif(
length(affected),
max = threshold
)
}
}
new_data
}
#' @export
print.step_impute_lower <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Lower bound imputation for "
print_step(names(x$threshold), x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_impute_lower <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = names(x$threshold),
value = unname(x$threshold)
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names, value = na_dbl)
}
res$id <- x$id
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.