#' Impute nominal data using the most common value
#'
#' `step_impute_mode()` creates a *specification* of a recipe step that will
#' substitute missing values of nominal variables by the training set mode of
#' those variables.
#'
#' @inheritParams step_center
#' @param modes A named character vector of modes. This is
#' `NULL` until computed by [prep()].
#' @param ptype A data frame prototype to cast new data sets to. This is
#' commonly a 0-row slice of the training set.
#' @template step-return
#' @family imputation steps
#' @export
#' @details `step_impute_mode` estimates the variable modes
#' from the data used in the `training` argument of
#' `prep.recipe`. `bake.recipe` then applies the new
#' values to new data sets using these values. If the training set
#' data has more than one mode, one is selected at random.
#'
#' As of `recipes` 0.1.16, this function name changed from `step_modeimpute()`
#' to `step_impute_mode()`.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble is returned with
#' columns `terms`, `value` , and `id`:
#'
#' \describe{
#' \item{terms}{character, the selectors or variables selected}
#' \item{value}{character, the mode value}
#' \item{id}{character, id of this step}
#' }
#'
#' @template case-weights-unsupervised
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data("credit_data", package = "modeldata")
#'
#' ## missing data per column
#' vapply(credit_data, function(x) mean(is.na(x)), c(num = 0))
#'
#' set.seed(342)
#' in_training <- sample(1:nrow(credit_data), 2000)
#'
#' credit_tr <- credit_data[in_training, ]
#' credit_te <- credit_data[-in_training, ]
#' missing_examples <- c(14, 394, 565)
#'
#' rec <- recipe(Price ~ ., data = credit_tr)
#'
#' impute_rec <- rec %>%
#' step_impute_mode(Status, Home, Marital)
#'
#' imp_models <- prep(impute_rec, training = credit_tr)
#'
#' imputed_te <- bake(imp_models, new_data = credit_te)
#'
#' table(credit_te$Home, imputed_te$Home, useNA = "always")
#'
#' tidy(impute_rec, number = 1)
#' tidy(imp_models, number = 1)
step_impute_mode <-
function(recipe,
...,
role = NA,
trained = FALSE,
modes = NULL,
ptype = NULL,
skip = FALSE,
id = rand_id("impute_mode")) {
add_step(
recipe,
step_impute_mode_new(
terms = enquos(...),
role = role,
trained = trained,
modes = modes,
ptype = ptype,
skip = skip,
id = id,
case_weights = NULL
)
)
}
step_impute_mode_new <-
function(terms, role, trained, modes, ptype, skip, id, case_weights) {
step(
subclass = "impute_mode",
terms = terms,
role = role,
trained = trained,
modes = modes,
ptype = ptype,
skip = skip,
id = id,
case_weights = case_weights
)
}
#' @export
prep.step_impute_mode <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
wts <- get_case_weights(info, training)
were_weights_used <- are_weights_used(wts, unsupervised = TRUE)
if (isFALSE(were_weights_used)) {
wts <- NULL
}
modes <- vapply(training[, col_names], mode_est, c(mode = ""), wts = wts)
ptype <- vec_slice(training[, col_names], 0)
step_impute_mode_new(
terms = x$terms,
role = x$role,
trained = TRUE,
modes = modes,
ptype = ptype,
skip = x$skip,
id = x$id,
case_weights = were_weights_used
)
}
#' @export
bake.step_impute_mode <- function(object, new_data, ...) {
col_names <- names(object$modes)
check_new_data(col_names, object, new_data)
for (col_name in col_names) {
if (!any(is.na(new_data[[col_name]]))) {
next
}
if (is.null(object$ptype)) {
cli::cli_warn(c(
"!" = "{.arg ptype} was added to {.fn step_impute_mode} after this \\
recipe was created.",
"i" = "Regenerate your recipe to avoid this warning."
))
} else {
new_data[[col_name]] <- vctrs::vec_cast(
new_data[[col_name]],
object$ptype[[col_name]]
)
}
mode_val <- cast(object$modes[[col_name]], new_data[[col_name]])
new_data[is.na(new_data[[col_name]]), col_name] <- mode_val
}
new_data
}
#' @export
print.step_impute_mode <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Mode imputation for "
print_step(names(x$modes), x$terms, x$trained, title, width,
case_weights = x$case_weights)
invisible(x)
}
mode_est <- function(x, wts = NULL, call = caller_env(2)) {
if (!is.character(x) & !is.factor(x))
cli::cli_abort(
"The data should be character or factor to compute the mode. \\
Not {.obj_type_friendly {x}}.",
call = call
)
tab <- weighted_table(x, wts = wts)
modes <- names(tab)[tab == max(tab)]
sample(modes, size = 1)
}
#' @rdname tidy.recipe
#' @export
tidy.step_impute_mode <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = names(x$modes),
value = unname(x$modes)
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names, value = na_chr)
}
res$id <- x$id
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.