#' Add new variables using dplyr
#'
#' `step_mutate()` creates a *specification* of a recipe step that will add
#' variables using [dplyr::mutate()].
#'
#' @inheritParams step_pca
#' @inheritParams step_center
#' @param ... Name-value pairs of expressions. See [dplyr::mutate()].
#' @param .pkgs Character vector, package names of functions used in
#' expressions `...`. Should be specified if using non-base functions.
#' @param inputs Quosure(s) of `...`.
#' @template step-return
#' @template mutate-leakage
#' @details When an object in the user's global environment is
#' referenced in the expression defining the new variable(s),
#' it is a good idea to use quasiquotation (e.g. `!!`) to embed
#' the value of the object in the expression (to be portable
#' between sessions). See the examples.
#'
#' If a preceding step removes a column that is selected by name in
#' `step_mutate()`, the recipe will error when being estimated with [prep()].
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble is returned with
#' columns `terms`, `value` , and `id`:
#'
#' \describe{
#' \item{terms}{character, the selectors or variables selected}
#' \item{value}{character, expression passed to `mutate()`}
#' \item{id}{character, id of this step}
#' }
#'
#' @template case-weights-not-supported
#'
#' @family individual transformation steps
#' @family dplyr steps
#' @export
#' @examples
#' rec <-
#' recipe(~., data = iris) %>%
#' step_mutate(
#' dbl_width = Sepal.Width * 2,
#' half_length = Sepal.Length / 2
#' )
#'
#' prepped <- prep(rec, training = iris %>% slice(1:75))
#'
#' library(dplyr)
#'
#' dplyr_train <-
#' iris %>%
#' as_tibble() %>%
#' slice(1:75) %>%
#' mutate(
#' dbl_width = Sepal.Width * 2,
#' half_length = Sepal.Length / 2
#' )
#'
#' rec_train <- bake(prepped, new_data = NULL)
#' all.equal(dplyr_train, rec_train)
#'
#' dplyr_test <-
#' iris %>%
#' as_tibble() %>%
#' slice(76:150) %>%
#' mutate(
#' dbl_width = Sepal.Width * 2,
#' half_length = Sepal.Length / 2
#' )
#' rec_test <- bake(prepped, iris %>% slice(76:150))
#' all.equal(dplyr_test, rec_test)
#'
#' # Embedding objects:
#' const <- 1.414
#'
#' qq_rec <-
#' recipe(~., data = iris) %>%
#' step_mutate(
#' bad_approach = Sepal.Width * const,
#' best_approach = Sepal.Width * !!const
#' ) %>%
#' prep(training = iris)
#'
#' bake(qq_rec, new_data = NULL, contains("appro")) %>% slice(1:4)
#'
#' # The difference:
#' tidy(qq_rec, number = 1)
step_mutate <- function(recipe,
...,
.pkgs = character(),
role = "predictor",
trained = FALSE,
inputs = NULL,
skip = FALSE,
id = rand_id("mutate")) {
check_character(.pkgs)
recipes_pkg_check(required_pkgs.step_mutate(list(.pkgs = .pkgs)))
inputs <- enquos(...)
add_step(
recipe,
step_mutate_new(
.pkgs = .pkgs,
role = role,
trained = trained,
inputs = inputs,
skip = skip,
id = id
)
)
}
step_mutate_new <-
function(.pkgs, role, trained, inputs, skip, id) {
step(
subclass = "mutate",
.pkgs = .pkgs,
role = role,
trained = trained,
inputs = inputs,
skip = skip,
id = id
)
}
#' @export
prep.step_mutate <- function(x, training, info = NULL, ...) {
step_mutate_new(
trained = TRUE,
.pkgs = x$.pkgs,
role = x$role,
inputs = x$inputs,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_mutate <- function(object, new_data, ...) {
dplyr::mutate(new_data, !!!object$inputs)
}
#' @export
print.step_mutate <-
function(x, width = max(20, options()$width - 35), ...) {
title <- "Variable mutation for "
print_step(x$inputs, x$inputs, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_mutate <- function(x, ...) {
inputs <- x$inputs
terms <- names(quos_auto_name(inputs))
value <- map_chr(unname(inputs), as_label)
tibble(
terms = terms,
value = value,
id = rep(x$id, length(x$inputs))
)
}
#' @rdname required_pkgs.recipe
#' @export
required_pkgs.step_mutate <- function(x, ...) {
x$.pkgs
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.