#' Square root transformation
#'
#' `step_sqrt()` creates a *specification* of a recipe step that will apply
#' square root transform to the variables.
#'
#' @inheritParams step_center
#' @inheritParams step_pca
#' @template step-return
#' @family individual transformation steps
#' @details
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble is returned with
#' columns `terms` and `id`:
#'
#' \describe{
#' \item{terms}{character, the selectors or variables selected}
#' \item{id}{character, id of this step}
#' }
#'
#' @template case-weights-not-supported
#'
#' @export
#' @examples
#' set.seed(313)
#' examples <- matrix(rnorm(40)^2, ncol = 2)
#' examples <- as.data.frame(examples)
#'
#' rec <- recipe(~ V1 + V2, data = examples)
#'
#' sqrt_trans <- rec %>%
#' step_sqrt(all_numeric_predictors())
#'
#' sqrt_obj <- prep(sqrt_trans, training = examples)
#'
#' transformed_te <- bake(sqrt_obj, examples)
#' plot(examples$V1, transformed_te$V1)
#'
#' tidy(sqrt_trans, number = 1)
#' tidy(sqrt_obj, number = 1)
step_sqrt <- function(recipe, ..., role = NA,
trained = FALSE, columns = NULL,
skip = FALSE,
id = rand_id("sqrt")) {
add_step(
recipe,
step_sqrt_new(
terms = enquos(...),
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
)
}
step_sqrt_new <-
function(terms, role, trained, columns, skip, id) {
step(
subclass = "sqrt",
terms = terms,
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
}
#' @export
prep.step_sqrt <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("double", "integer"))
step_sqrt_new(
terms = x$terms,
role = x$role,
trained = TRUE,
columns = col_names,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_sqrt <- function(object, new_data, ...) {
col_names <- names(object$columns)
check_new_data(col_names, object, new_data)
for (col_name in col_names) {
new_data[[col_name]] <- sqrt(new_data[[col_name]])
}
new_data
}
#' @export
print.step_sqrt <- function(x, width = max(20, options()$width - 29), ...) {
title <- "Square root transformation on "
print_step(x$columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_sqrt <- function(x, ...) {
res <- simple_terms(x, ...)
res$id <- x$id
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.