library(testthat)
library(recipes)
set.seed(4693)
rand_data <- data.frame(x = round(runif(10), 2), y = round(runif(10), 2))
rand_data$x[1] <- NA
dists <-
apply(as.matrix(rand_data),
1,
function(x, y, z) {
sqrt((x[1] - y)^2 + (x[2] - z)^2)
},
y = 0.5, z = 0.25
)
test_that("basic functionality", {
rec <- recipe(~ x + y, data = rand_data) %>%
step_geodist(x, y,
ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = FALSE,
log = FALSE
)
rec_trained <- prep(rec, training = rand_data)
tr_int <- bake(rec_trained, new_data = NULL, all_predictors())
te_int <- bake(rec_trained, rand_data, all_predictors())
expect_equal(tr_int[["geo_dist"]], dists)
expect_equal(te_int[["geo_dist"]], dists)
rec_log <- recipe(~ x + y, data = rand_data) %>%
step_geodist(x, y,
ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = FALSE,
log = TRUE
)
rec_log_trained <- prep(rec_log, training = rand_data)
tr_log_int <- bake(rec_log_trained, new_data = NULL, all_predictors())
te_log_int <- bake(rec_log_trained, rand_data, all_predictors())
expect_equal(tr_log_int[["geo_dist"]], log(dists))
expect_equal(te_log_int[["geo_dist"]], log(dists))
})
test_that("lat lon", {
postal <- tibble(latitude = 0, longitude = 0)
near_station <- recipe(~., data = postal) %>%
step_geodist(
lat = latitude, lon = longitude, log = FALSE,
ref_lat = 0, ref_lon = 0,
is_lat_lon = TRUE
) %>%
prep() %>%
bake(new_data = NULL)
expect_equal(near_station[["geo_dist"]], 0)
postal <- tibble(latitude = 38.8981014, longitude = -77.0104265)
near_station <- recipe(~., data = postal) %>%
step_geodist(
lat = latitude, lon = longitude, log = FALSE,
ref_lat = 38.8986312, ref_lon = -77.0062457,
is_lat_lon = TRUE
) %>%
prep() %>%
bake(new_data = NULL)
expect_equal(near_station[["geo_dist"]], 367, tolerance = 1)
expect_snapshot(error = TRUE,
near_station <- recipe(~., data = postal) %>%
step_geodist(
lat = latitude, lon = longitude, log = FALSE,
ref_lat = 100, ref_lon = 100,
is_lat_lon = TRUE
) %>%
prep()
)
expect_snapshot(error = TRUE,
near_station <- recipe(~., data = postal) %>%
step_geodist(
lat = latitude, lon = longitude, log = FALSE,
ref_lat = 0, ref_lon = 190,
is_lat_lon = TRUE
) %>%
prep()
)
expect_snapshot(error = TRUE,
near_station <- recipe(~., data = postal) %>%
step_geodist(
lat = latitude, lon = longitude, log = FALSE,
ref_lat = -100, ref_lon = 0,
is_lat_lon = TRUE
) %>%
prep()
)
expect_snapshot(error = TRUE,
near_station <- recipe(~., data = postal) %>%
step_geodist(
lat = latitude, lon = longitude, log = FALSE,
ref_lat = 0, ref_lon = -190,
is_lat_lon = TRUE
) %>%
prep()
)
postal <- tibble(latitude = 100, longitude = 0)
expect_snapshot(error = TRUE,
near_station <- recipe(~., data = postal) %>%
step_geodist(
lat = latitude, lon = longitude, log = FALSE,
ref_lat = 38.8986312, ref_lon = -77.0062457,
is_lat_lon = TRUE
) %>%
prep()
)
postal <- tibble(latitude = 0, longitude = 190)
expect_snapshot(error = TRUE,
near_station <- recipe(~., data = postal) %>%
step_geodist(
lat = latitude, lon = longitude, log = FALSE,
ref_lat = 38.8986312, ref_lon = -77.0062457,
is_lat_lon = TRUE
) %>%
prep()
)
postal <- tibble(latitude = -100, longitude = 0)
expect_snapshot(error = TRUE,
near_station <- recipe(~., data = postal) %>%
step_geodist(
lat = latitude, lon = longitude, log = FALSE,
ref_lat = 38.8986312, ref_lon = -77.0062457,
is_lat_lon = TRUE
) %>%
prep()
)
postal <- tibble(latitude = 0, longitude = -190)
expect_snapshot(error = TRUE,
near_station <- recipe(~., data = postal) %>%
step_geodist(
lat = latitude, lon = longitude, log = FALSE,
ref_lat = 38.8986312, ref_lon = -77.0062457,
is_lat_lon = TRUE
) %>%
prep()
)
})
test_that("check_name() is used", {
dat <- mtcars
dat$geo_dist <- dat$mpg
rec <- recipe(~., data = dat) %>%
step_geodist(vs, am, ref_lat = 0, ref_lon = 0)
expect_snapshot(
error = TRUE,
prep(rec, training = dat)
)
})
test_that("bad args", {
rand_data_2 <- rand_data
rand_data_2$x1 <- runif(nrow(rand_data_2))
rand_data_2$y1 <- runif(nrow(rand_data_2))
rec <- recipe(~., data = rand_data_2)
expect_snapshot(error = TRUE,
rec %>%
step_geodist(starts_with("x"), y, ref_lat = 0.5, ref_lon = 0.25) %>%
prep(training = rand_data_2)
)
expect_snapshot(error = TRUE,
rec %>%
step_geodist(x, starts_with("y"), ref_lat = 0.5, ref_lon = 0.25) %>%
prep(training = rand_data_2)
)
expect_snapshot(error = TRUE,
rec %>%
step_geodist(x, y, ref_lat = letters[1:2], ref_lon = 0.25) %>%
prep(training = rand_data_2)
)
expect_snapshot(error = TRUE,
rec %>%
step_geodist(x, y, ref_lon = letters[1:2], ref_lat = 0.25) %>%
prep(training = rand_data_2)
)
expect_snapshot(error = TRUE,
rec %>%
step_geodist(x, y, ref_lon = 0.5, ref_lat = 0.25, name = 1) %>%
prep(training = rand_data_2)
)
expect_snapshot(error = TRUE,
rec %>%
step_geodist(x, y, ref_lon = 0.5, ref_lat = 0.25, log = exp(1)) %>%
prep(training = rand_data_2)
)
expect_snapshot(error = TRUE,
recipe(~ x + y, data = rand_data) %>%
step_geodist(x, y,
ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = "no",
log = FALSE
) %>%
prep(training = rand_data)
)
expect_snapshot(error = TRUE,
recipe(~ x + y, data = rand_data) %>%
step_geodist(x, y,
ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = c(TRUE, TRUE),
log = FALSE
) %>%
prep(training = rand_data)
)
})
# Infrastructure ---------------------------------------------------------------
test_that("bake method errors when needed non-standard role columns are missing", {
rec <- recipe(~ x + y, data = rand_data) %>%
step_geodist(x, y,
ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = FALSE,
log = FALSE
) %>%
update_role(x, y, new_role = "potato") %>%
update_role_requirements(role = "potato", bake = FALSE)
rec_trained <- prep(rec, rand_data)
expect_snapshot(
error = TRUE,
bake(rec_trained, new_data = rand_data[, 2, drop = FALSE])
)
})
test_that("empty printing", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_geodist(rec, ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = FALSE)
expect_snapshot(rec)
rec <- prep(rec, mtcars)
expect_snapshot(rec)
})
test_that("empty selection prep/bake is a no-op", {
rec1 <- recipe(mpg ~ ., mtcars)
rec2 <- step_geodist(rec1, ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = FALSE)
rec1 <- prep(rec1, mtcars)
rec2 <- prep(rec2, mtcars)
baked1 <- bake(rec1, mtcars)
baked2 <- bake(rec2, mtcars)
expect_identical(baked1, baked2)
})
test_that("empty selection tidy method works", {
rec <- recipe(mpg ~ ., mtcars)
rec <- step_geodist(rec, ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = FALSE)
expect <- tibble(
latitude = character(),
longitude = character(),
ref_latitude = double(),
ref_longitude = double(),
is_lat_lon = logical(),
name = character(),
id = character()
)
expect_identical(tidy(rec, number = 1), expect)
rec <- prep(rec, mtcars)
expect_identical(tidy(rec, number = 1), expect)
})
test_that("keep_original_cols works", {
new_names <- c("geo_dist")
rec <- recipe(~ x + y, data = rand_data) %>%
step_geodist(
x, y,
ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = FALSE,
keep_original_cols = FALSE
)
rec <- prep(rec)
res <- bake(rec, new_data = NULL)
expect_equal(
colnames(res),
new_names
)
rec <- recipe(~ x + y, data = rand_data) %>%
step_geodist(
x, y,
ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = FALSE,
keep_original_cols = TRUE
)
rec <- prep(rec)
res <- bake(rec, new_data = NULL)
expect_equal(
colnames(res),
c("x", "y", new_names)
)
})
test_that("keep_original_cols - can prep recipes with it missing", {
rec <- recipe(~ x + y, data = rand_data) %>%
step_geodist(
x, y,
ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = FALSE
)
rec$steps[[1]]$keep_original_cols <- NULL
expect_snapshot(
rec <- prep(rec)
)
expect_no_error(
bake(rec, new_data = rand_data)
)
})
test_that("printing", {
rec <- recipe(~ x + y, data = rand_data) %>%
step_geodist(
x, y,
ref_lat = 0.5, ref_lon = 0.25, is_lat_lon = FALSE
)
expect_snapshot(print(rec))
expect_snapshot(prep(rec))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.