vetiver_plot_metrics | R Documentation |
These three functions can be used for model monitoring (such as in a monitoring dashboard):
vetiver_compute_metrics()
computes metrics (such as accuracy for a
classification model or RMSE for a regression model) at a chosen time
aggregation period
vetiver_pin_metrics()
updates an existing pin storing model metrics
over time
vetiver_plot_metrics()
creates a plot of metrics over time
vetiver_plot_metrics(
df_metrics,
.index = .index,
.estimate = .estimate,
.metric = .metric,
.n = .n
)
df_metrics |
A tidy dataframe of metrics over time, such as created by
|
.index |
The variable in |
.estimate |
The variable in |
.metric |
The variable in |
.n |
The variable in |
A ggplot2
object.
vetiver_compute_metrics()
, vetiver_pin_metrics()
library(dplyr)
library(parsnip)
data(Chicago, package = "modeldata")
Chicago <- Chicago %>% select(ridership, date, all_of(stations))
training_data <- Chicago %>% filter(date < "2009-01-01")
testing_data <- Chicago %>% filter(date >= "2009-01-01", date < "2011-01-01")
monitoring <- Chicago %>% filter(date >= "2011-01-01", date < "2012-12-31")
lm_fit <- linear_reg() %>% fit(ridership ~ ., data = training_data)
library(pins)
b <- board_temp()
## before starting monitoring, initiate the metrics and pin
## (for example, with the testing data):
original_metrics <-
augment(lm_fit, new_data = testing_data) %>%
vetiver_compute_metrics(date, "week", ridership, .pred, every = 4L)
pin_write(b, original_metrics, "lm_fit_metrics", type = "arrow")
## to continue monitoring with new data, compute metrics and update pin:
new_metrics <-
augment(lm_fit, new_data = monitoring) %>%
vetiver_compute_metrics(date, "week", ridership, .pred, every = 4L)
vetiver_pin_metrics(b, new_metrics, "lm_fit_metrics")
library(ggplot2)
vetiver_plot_metrics(new_metrics) +
scale_size(range = c(2, 4))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.