tidy.boot | R Documentation |
Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
## S3 method for class 'boot'
tidy(
x,
conf.int = FALSE,
conf.level = 0.95,
conf.method = c("perc", "bca", "basic", "norm"),
exponentiate = FALSE,
...
)
x |
A |
conf.int |
Logical indicating whether or not to include a confidence
interval in the tidied output. Defaults to |
conf.level |
The confidence level to use for the confidence interval
if |
conf.method |
Passed to the |
exponentiate |
Logical indicating whether or not to exponentiate the
the coefficient estimates. This is typical for logistic and multinomial
regressions, but a bad idea if there is no log or logit link. Defaults
to |
... |
Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in
|
If weights were provided to the boot
function, an estimate
column is included showing the weighted bootstrap estimate, and the
standard error is of that estimate.
If there are no original statistics in the "boot" object, such as with a
call to tsboot
with orig.t = FALSE
, the original
and statistic
columns are omitted, and only estimate
and
std.error
columns shown.
A tibble::tibble()
with columns:
bias |
Bias of the statistic. |
std.error |
The standard error of the regression term. |
term |
The name of the regression term. |
statistic |
Original value of the statistic. |
tidy()
, boot::boot()
, boot::tsboot()
, boot::boot.ci()
,
rsample::bootstraps()
# load modeling library
library(boot)
clotting <- data.frame(
u = c(5, 10, 15, 20, 30, 40, 60, 80, 100),
lot1 = c(118, 58, 42, 35, 27, 25, 21, 19, 18),
lot2 = c(69, 35, 26, 21, 18, 16, 13, 12, 12)
)
# fit models
g1 <- glm(lot2 ~ log(u), data = clotting, family = Gamma)
bootfun <- function(d, i) {
coef(update(g1, data = d[i, ]))
}
bootres <- boot(clotting, bootfun, R = 999)
# summarize model fits with tidiers
tidy(g1, conf.int = TRUE)
tidy(bootres, conf.int = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.