jenny 2019-08-07
Look at the number of downloads in the past month of the packages exhibiting problems in the tidyr revdep check. Useful for prioritizing the investigation.
library(tidyverse)
new_problems_path <- here::here("revdep/problems.md")
md <- readLines(new_problems_path)
pkg <- md %>%
str_subset("^#[^#]") %>%
str_extract("[[:alnum:]]+")
dl <- cranlogs::cran_downloads(when = "last-month", packages = pkg)
dl_count <- dl %>%
count(package, wt = count) %>%
mutate(package = fct_reorder(package, n)) %>%
arrange(desc(package))
dl_count %>%
mutate(
prop = n / sum(n),
cum_prop = cumsum(prop)
) %>%
print(n = 20)
#> # A tibble: 68 x 4
#> package n prop cum_prop
#> <fct> <dbl> <dbl> <dbl>
#> 1 modelr 213523 0.397 0.397
#> 2 recipes 92174 0.171 0.568
#> 3 ggpubr 89239 0.166 0.734
#> 4 survminer 19592 0.0364 0.770
#> 5 d3r 18910 0.0351 0.805
#> 6 sunburstR 17281 0.0321 0.838
#> 7 sjstats 15138 0.0281 0.866
#> 8 sjPlot 12447 0.0231 0.889
#> 9 tidyquant 6471 0.0120 0.901
#> 10 gutenbergr 5001 0.00929 0.910
#> 11 tsibble 4173 0.00776 0.918
#> 12 widyr 3288 0.00611 0.924
#> 13 tibbletime 3231 0.00600 0.930
#> 14 bench 3221 0.00599 0.936
#> 15 fuzzyjoin 3118 0.00579 0.942
#> 16 ggstatsplot 2893 0.00538 0.947
#> 17 broomExtra 2441 0.00454 0.952
#> 18 ggalluvial 1890 0.00351 0.955
#> 19 groupedstats 1883 0.00350 0.959
#> 20 anomalize 1672 0.00311 0.962
#> # … with 48 more rows
ggplot(head(dl_count, 20), aes(package, n)) +
geom_col() +
coord_flip()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.