#' @title Make A Tibble of The Project's US Census Variables from American Factfinder
#' @description Return a `tibble` of all of the US Census data variables
#' that are obtained from the American Factfinder user interface: \link{https://factfinder.census.gov/}
#' @param data_template Tibble, the `data_template` object
#' @param acs_tables Tibble, the `acs_table` object
#' @param path Character, the path or connection to write to.
#' @return a `tibble`
#' @note Data source: \link{https://factfinder.census.gov/faces/nav/jsf/pages/searchresults.xhtml?refresh=t}
#' @rdname factfinder-data
#' @export
prepare_factfinder_data <- function(data_template, acs_tables, path){
# GET DATA ----------------------------------------------------------------
# The data need to be manually downloaded from their source: https://factfinder.census.gov/faces/nav/jsf/pages/searchresults.xhtml?refresh=t
# PREPARE DATA ------------------------------------------------------------
kc_2000_lut_fp <- "extdata/source/american-factfinder-downloads/KING_COUNTY_DEC_00_SF4_DP4/DEC_00_SF4_DP4_metadata.csv"
kc_2000_lut <- readr::read_csv(kc_2000_lut_fp) %>%
magrittr::set_names(c("VARIABLE","DESCRIPTION"))
kc_2000_fp <- "extdata/source/american-factfinder-downloads/KING_COUNTY_DEC_00_SF4_DP4/DEC_00_SF4_DP4.csv"
kc_2000_colnames <- readr::read_csv(kc_2000_fp) %>%
janitor::clean_names("screaming_snake") %>%
names()
kc_2000_raw <- readr::read_csv(kc_2000_fp, skip = 2,col_names = FALSE) %>%
magrittr::set_colnames(kc_2000_colnames) %>%
tidyr::gather(VARIABLE, ESTIMATE, dplyr::starts_with("HC")) %>%
dplyr::mutate(GEO_ID2 = as.character(GEO_ID2),
ESTIMATE = as.double(ESTIMATE)) %>%
dplyr::left_join(kc_2000_lut, by = "VARIABLE")
# get the ACS code for the VALUE variable ("B25077")
acs_variables_value <- acs_tables %>%
dplyr::filter(INDICATOR %in% c("VALUE", "RENT")) %>%
dplyr::pull(VARIABLE)
acs_ltdb_join <- tibble::tibble(VARIABLE_ACS = acs_variables_value,
VARIABLE_LTDB = c("HC01_VC73", "HC01_VC104"))
kc_median_home_value_2000 <- kc_2000_raw %>%
dplyr::filter(DESCRIPTION %in% c("Number; Specified owner-occupied units - VALUE - Median (dollars)",
"Number; Specified renter-occupied units - GROSS RENT - Median (dollars)")) %>%
dplyr::left_join(acs_ltdb_join, by = c(VARIABLE = "VARIABLE_LTDB")) %>%
dplyr::select(-VARIABLE) %>%
dplyr::rename(VARIABLE = VARIABLE_ACS)
# REFORMAT DATA -----------------------------------------------------------
kc_median_home_value_2000_transformed <- kc_median_home_value_2000 %>%
dplyr::transmute(SOURCE = "FACTFINDER",
GEOGRAPHY_ID = GEO_ID2,
GEOGRAPHY_ID_TYPE = "GEOID",
GEOGRAPHY_NAME = GEO_DISPLAY_LABEL,
GEOGRAPHY_TYPE = "county",
DATE_BEGIN = get_date_begin("2000"), # creates the first day of the 5-year span
DATE_END = get_date_end("2000"), # creates the last day of the 5-year span
DATE_GROUP_ID = create_range_year(DATE_BEGIN,DATE_END),
DATE_RANGE = create_range_date(DATE_BEGIN, DATE_END),
DATE_RANGE_TYPE = "one year",
VARIABLE,
VARIABLE_SUBTOTAL = VARIABLE,
VARIABLE_SUBTOTAL_DESC = DESCRIPTION,
MEASURE_TYPE = "MEDIAN",
ESTIMATE,
MOE = NA_real_
) %>%
dplyr::mutate_if(lubridate::is.Date, as.character)
kc_median_home_value_2000_formatted <- data_template %>%
dplyr::full_join(kc_median_home_value_2000_transformed,
by = c("SOURCE",
"GEOGRAPHY_ID",
"GEOGRAPHY_ID_TYPE",
"GEOGRAPHY_NAME",
"GEOGRAPHY_TYPE",
"DATE_GROUP_ID",
"DATE_BEGIN",
"DATE_END",
"DATE_RANGE",
"DATE_RANGE_TYPE",
"VARIABLE",
"VARIABLE_SUBTOTAL",
"VARIABLE_SUBTOTAL_DESC",
"MEASURE_TYPE",
"ESTIMATE",
"MOE"))
kc_median_home_value_2000_ready <- kc_median_home_value_2000_formatted
# WRITE DATA --------------------------------------------------------------
readr::write_csv(x = kc_median_home_value_2000_ready, path = path)
# RETURN ------------------------------------------------------------------
factfinder_data_prep_status <- NeighborhoodChangeTypology::get_modified_time(path)
return(factfinder_data_prep_status)
}
#' @rdname factfinder-data
#' @export
make_factfinder_data <- function(path){
factfinder_data <- suppressWarnings(suppressMessages(readr::read_csv(path))) %>%
dplyr::mutate(GEOGRAPHY_ID = as.character(GEOGRAPHY_ID),
DATE_BEGIN = as.character(DATE_BEGIN),
DATE_END = as.character(DATE_END),
MOE = as.numeric(MOE))
return(factfinder_data)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.