#' @title Make The Change in Comparison Indicators
#' @description Description
#' @param indicators_by_dimension desc
#' @param change_dategroupid_long desc
#' @param indicator_value_template desc
#' @return a `tibble`
#' @export
make_indicators_change_in_comparison <- function(indicators_comparison,
change_dategroupid_long,
indicator_value_template){
# NOTE --------------------------------------------------------------------
# This applies only to housing market indicators
# PREPARE DATA --------------------------------------------------------
inds_housing <- indicators_comparison %>%
dplyr::rename(DATE_GROUP_ID_JOIN = DATE_GROUP_ID) %>%
dplyr::filter(DIMENSION %in% "HOUSING_MARKET") %>%
dplyr::select(-SOURCE, -VARIABLE_DESC) %>% # these columns shouldn't be included in the CHANGE indicator
drop_na_cols() # drop the empty columns
inds_housing_long <- inds_housing %>%
tidyr::gather(VALUE_TYPE, VALUE, dplyr::matches("ESTIMATE|MOE|RELATIVE"))
check_inds_housing_long <- function(){
# look at the long data structure (value-type fields are all stored in the VALUE field, which coerces them to character)
inds_housing_long %>% count(VALUE_TYPE)
}
# JOIN + SPREAD DATA ------------------------------------------------------
inds_housing_change_dategroupid_join <- change_dategroupid_long %>%
dplyr::left_join(inds_housing_long,
by = c("DIMENSION",
"INDICATOR",
"VARIABLE",
"DATE_GROUP_ID_JOIN")) %>%
dplyr::filter(DIMENSION %in% "HOUSING_MARKET") # Change in comparison only applies to HOUSING_MARKET -related indicators
inds_wide <- inds_housing_change_dategroupid_join %>%
#drop fields that will impede spread()
dplyr::select(-DATE_GROUP_ID_JOIN, -DATE_BEGIN, -DATE_END, -DATE_RANGE, -DATE_RANGE_TYPE) %>%
dplyr::mutate(DATE_TYPE = stringr::str_extract(DATE_TYPE, "BEGIN|END")) %>%
# GROUP_ID in preparation for spread()
dplyr::mutate(GROUP_ID = dplyr::group_indices(.,DIMENSION, INDICATOR, VARIABLE, DATE_GROUP_ID, GEOGRAPHY_ID, MEASURE_TYPE)) %>%
tidyr::unite("TYPE_ROLE_YEAR", c(VALUE_TYPE, DATE_TYPE)) %>%
tidyr::spread(TYPE_ROLE_YEAR, VALUE) %>%
dplyr::select(-GROUP_ID)
change_dategroupid_wide_change <- inds_wide %>%
dplyr::mutate(RELATIVE_CHANGE_DESC = stringr::str_c(RELATIVE_DESC_BEGIN," -> ",RELATIVE_DESC_END),
RELATIVE_CHANGE_LGL = RELATIVE_CHANGE_DESC %in% c("LOW/MED -> HIGH")
)
# VISUALIZE DATA ----------------------------------------------------------
check_change_dategroupid_wide_change_na <- function(){
# check the NA's first
change_dategroupid_wide_change %>%
count(is.na(RELATIVE_CHANGE_DESC), MEASURE_TYPE) %>% print(n=Inf)
}
view_change_dategroupid_wide_change_by_dategroupid <- function(){
# check the change types (INDICATOR_TYPE_MODEL)
change_dategroupid_wide_change %>%
filter(! is.na(INDICATOR_TYPE_MODEL)) %>%
count(DATE_GROUP_ID, INDICATOR, VARIABLE, INDICATOR_TYPE_MODEL) %>% View()
}
view_change_dategroupid_wide_change_by_ind <- function(){
# check the change types (INDICATOR_TYPE_MODEL)
change_dategroupid_wide_change %>%
filter(! is.na(INDICATOR_TYPE_MODEL)) %>%
count(INDICATOR, VARIABLE, DATE_GROUP_ID, INDICATOR_TYPE_MODEL) %>% View()
}
# JOIN DATE_* FIELDS ------------------------------------------------------
date_group_id_fields <- inds_housing %>%
dplyr::select(-MEASURE_TYPE, -dplyr::matches("ESTIMATE|MOE|RELATIVE")) %>%
dplyr::distinct()
change_dategroupid_all_fields <- change_dategroupid_wide_change %>%
dplyr::mutate(DATE_GROUP_ID_SEPARATE = DATE_GROUP_ID,
RNUM = dplyr::row_number()) %>%
tidyr::separate(DATE_GROUP_ID_SEPARATE, into = c("BEGIN_DATE_GROUP_ID", "END_DATE_GROUP_ID"),sep = "_TO_") %>%
tidyr::gather(DATE_TYPE, DATE_GROUP_ID_JOIN, c(BEGIN_DATE_GROUP_ID, END_DATE_GROUP_ID)) %>%
dplyr::left_join(date_group_id_fields,
by = c("DIMENSION",
"INDICATOR",
"VARIABLE",
"GEOGRAPHY_ID",
"GEOGRAPHY_ID_TYPE",
"GEOGRAPHY_NAME",
"GEOGRAPHY_TYPE",
"DATE_GROUP_ID_JOIN")) %>%
dplyr::mutate(DATE_TYPE = stringr::str_extract(DATE_TYPE,"^BEGIN|^END")) %>%
dplyr::rename(DATE_ROLE = DATE_TYPE) %>%
tidyr::gather(DATE_FIELD_TYPE, DATE_FIELD_VAL, DATE_GROUP_ID, DATE_BEGIN, DATE_END, DATE_RANGE, DATE_RANGE_TYPE) %>%
tidyr::unite("ROLE_DATE_FIELD_TYPE", c(DATE_ROLE, DATE_FIELD_TYPE)) %>%
dplyr::select(-DATE_GROUP_ID_JOIN) %>% # this messess up the spread()
tidyr::spread(ROLE_DATE_FIELD_TYPE,DATE_FIELD_VAL) %>%
dplyr::mutate(DATE_GROUP_ID = END_DATE_GROUP_ID,
DATE_BEGIN = BEGIN_DATE_BEGIN,
DATE_END = END_DATE_END,
DATE_RANGE = stringr::str_remove_all(stringr::str_c(DATE_BEGIN,DATE_END),"\\-"),
DATE_RANGE_TYPE = stringr::str_c("change (",BEGIN_DATE_RANGE_TYPE, " to ",END_DATE_RANGE_TYPE,")")) %>%
dplyr::select(-dplyr::starts_with("BEGIN"),
-dplyr::starts_with("END"),
-RNUM)
# CONVERT COLUMNS BACK TO THEIR ORIGINAL CLASSES --------------------------
change_dategroupid_classes <- change_dategroupid_all_fields %>%
mutate_at(dplyr::vars(dplyr::matches("ESTIMATE|MOE")),as.double) %>%
mutate_at(dplyr::vars(dplyr::matches("RELATIVE.+BEGIN|RELATIVE.+END")),as.double) %>%
mutate_at(dplyr::vars(dplyr::matches("DESC")),as.character) %>%
mutate_at(dplyr::vars(dplyr::matches("LGL")),as.logical)
# CREATE SOURCE AND VARIABLE_DESC ----------------------------------------------------
change_dategroupid_var_desc <- change_dategroupid_classes %>%
dplyr::mutate(SOURCE = "MULTIPLE",
VARIABLE_DESC = stringr::str_c(MEASURE_TYPE, VARIABLE, sep = "_"))
# REFORMAT ----------------------------------------------------------------
# Note: this just makes sure that the columns have the same order as the indicator_template
indicators_change_in_comparison_ready <- indicator_value_template %>%
dplyr::full_join(change_dategroupid_var_desc,
by = c("SOURCE",
"GEOGRAPHY_ID",
"GEOGRAPHY_ID_TYPE",
"GEOGRAPHY_NAME",
"GEOGRAPHY_TYPE",
"DATE_GROUP_ID",
"DATE_BEGIN",
"DATE_END",
"DATE_RANGE",
"DATE_RANGE_TYPE",
"DIMENSION",
"INDICATOR",
"VARIABLE",
"VARIABLE_DESC",
"MEASURE_TYPE",
"ESTIMATE_BEGIN",
"ESTIMATE_END",
"MOE_BEGIN",
"MOE_END",
"RELATIVE_BEGIN",
"RELATIVE_DESC_BEGIN",
"RELATIVE_THRESHOLD_BEGIN",
"RELATIVE_LGL_BEGIN",
"RELATIVE_END",
"RELATIVE_DESC_END",
"RELATIVE_THRESHOLD_END",
"RELATIVE_LGL_END",
"RELATIVE_CHANGE_DESC",
"RELATIVE_CHANGE_LGL"))
indicators_change_in_comparison <- indicators_change_in_comparison_ready
# NOTES -------------------------------------------------------------------
# Fields like INDICATOR_TYPE_THRESHOLD_VALUE or INDICATOR_TYPE_VALUE are NA;
# this is because those values are stored in *_BEGIN or *_END fields
# RETURN ------------------------------------------------------------------
return(indicators_change_in_comparison)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.