make_parcel_value <- function(data_template, zip_path, file_path){
# NeighborhoodChangeTypology::extract_file(zip_path, file_path)
#
# parcel_value_raw <- suppressWarnings(suppressMessages(readr::read_csv(file_path))) %>%
# janitor::clean_names(case = "screaming_snake")
parcel_value_filter <- suppressWarnings(suppressMessages(readr::read_csv("extdata/osf/kc-assessor-parcels-2005-2010-2018/EXTR_ValueHistory_V.csv"))) %>%
janitor::clean_names(case = "screaming_snake") %>%
dplyr::filter(TAX_STATUS %in% "T") %>% # The object takes up too much memory! Need to filter it down.
dplyr::filter(TAX_YR %in% c(2005, 2010, 2018))
parcel_value_long <- parcel_value_filter %>%
dplyr::rename(VALUE_LAND = LAND_VAL,
VALUE_IMPROVEMENT = IMPS_VAL,
APPRAISED_VALUE_LAND = APPR_LAND_VAL,
APPRAISED_VALUE_IMPROVEMENT = APPR_IMPS_VAL,
APPRAISED_VALUE_IMPROVEMENT_INCR = APPR_IMP_INCR
) %>%
tidyr::gather(VARIABLE, ESTIMATE, VALUE_LAND, VALUE_IMPROVEMENT, APPRAISED_VALUE_LAND, APPRAISED_VALUE_IMPROVEMENT, APPRAISED_VALUE_IMPROVEMENT_INCR) %>%
dplyr::rename_at(dplyr::vars(-dplyr::matches("VARIABLE|ESTIMATE")), dplyr::funs(stringr::str_c("META_",.)))
p_val_ready <- data_template %>%
full_join(parcel_value_long, by = c("VARIABLE",
"ESTIMATE",
ENDYEAR = "META_TAX_YR")) %>%
mutate(SOURCE = "ASSESSOR",
GEOGRAPHY_ID = make_pin(META_MAJOR, META_MINOR),
GEOGRAPHY_ID_TYPE = "PIN",
GEOGRAPHY_NAME = NA_character_,
GEOGRAPHY_TYPE = "parcel",
ENDYEAR = ENDYEAR,
VARIABLE = VARIABLE,
MEASURE_TYPE = "VALUE",
ESTIMATE = ESTIMATE)
parcel_value <- parcel_value_ready
return(parcel_value)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.