set.seed(8274)
n_obs <- 84 + 12
x <- seq_len(n_obs)
dates <- seq(as.Date("2015-01-01"), as.Date("2022-12-01"), by = "month")
# basic seasonality and trend
y <- cospi(x / 6) * sqrt(x / 100) * 25 +
sinpi(x / 3) * 25 +
sqrt(x) * 10
# adding t-distributed noise and an offset for strictly positive data
y <- 5 + pmax(0, y + rt(n = n_obs, df = 3) * 10)
# adding anomalies to the end of the training data
y[84-1] <- y[84-1] * 3
y[84] <- y[84] * 1.5
flowers <- data.frame(
date = dates[1:84],
flowers = round(y[1:84])
)
flowers_holdout <- data.frame(
date = dates[85:n_obs],
flowers = round(y[85:n_obs])
)
save(flowers, file = "data/flowers.rda")
save(flowers_holdout, file = "data/flowers_holdout.rda")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.