| Lrnr_define_interactions | R Documentation |
This learner adds interactions to its chained task. Intended for use in a Pipeline, defining a coupling of the interactions with the learner.
An R6Class object inheriting from
Lrnr_base.
A learner object inheriting from Lrnr_base with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base.
interactions: A list whose elements are a character
vector of covariates from which to create interaction terms.
warn_on_existing: If TRUE, produce a warning if there
is already a column with a name matching this given interaction term.
Other Learners:
Custom_chain,
Lrnr_HarmonicReg,
Lrnr_arima,
Lrnr_bartMachine,
Lrnr_base,
Lrnr_bayesglm,
Lrnr_caret,
Lrnr_cv_selector,
Lrnr_cv,
Lrnr_dbarts,
Lrnr_density_discretize,
Lrnr_density_hse,
Lrnr_density_semiparametric,
Lrnr_earth,
Lrnr_expSmooth,
Lrnr_gam,
Lrnr_ga,
Lrnr_gbm,
Lrnr_glm_fast,
Lrnr_glm_semiparametric,
Lrnr_glmnet,
Lrnr_glmtree,
Lrnr_glm,
Lrnr_grfcate,
Lrnr_grf,
Lrnr_gru_keras,
Lrnr_gts,
Lrnr_h2o_grid,
Lrnr_hal9001,
Lrnr_haldensify,
Lrnr_hts,
Lrnr_independent_binomial,
Lrnr_lightgbm,
Lrnr_lstm_keras,
Lrnr_mean,
Lrnr_multiple_ts,
Lrnr_multivariate,
Lrnr_nnet,
Lrnr_nnls,
Lrnr_optim,
Lrnr_pca,
Lrnr_pkg_SuperLearner,
Lrnr_polspline,
Lrnr_pooled_hazards,
Lrnr_randomForest,
Lrnr_ranger,
Lrnr_revere_task,
Lrnr_rpart,
Lrnr_rugarch,
Lrnr_screener_augment,
Lrnr_screener_coefs,
Lrnr_screener_correlation,
Lrnr_screener_importance,
Lrnr_sl,
Lrnr_solnp_density,
Lrnr_solnp,
Lrnr_stratified,
Lrnr_subset_covariates,
Lrnr_svm,
Lrnr_tsDyn,
Lrnr_ts_weights,
Lrnr_xgboost,
Pipeline,
Stack,
define_h2o_X(),
undocumented_learner
data(cpp_imputed)
covars <- c("apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn")
outcome <- "haz"
task <- sl3_Task$new(cpp_imputed, covariates = covars, outcome = outcome)
interactions <- list(c("apgar1", "parity"), c("apgar5", "parity"))
lrnr_interact <- Lrnr_define_interactions$new(
list(c("apgar1", "parity"), c("apgar5", "parity"))
)
lrnr_glm <- Lrnr_glm$new()
interaction_pipeline_glm <- make_learner(Pipeline, lrnr_interact, lrnr_glm)
fit <- interaction_pipeline_glm$train(task)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.