Lrnr_grfcate | R Documentation |
This learner implements the so-called "Causal Forests" estimator of the
conditional average treatment effect (CATE) using the grf package
function causal_forest
. This learner is intended for use
in the tmle3mopttx
package, where it is necessary to fit the CATE,
and then predict CATE values from new covariate data. As such, this learner
requires a treatment/exposure node to be specified (A
).
An R6Class
object inheriting from
Lrnr_base
.
A learner object inheriting from Lrnr_base
with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base
.
A
: Column name in the sl3_Task
's covariates
that
indicates the treatment/exposure of interest. The treatment assignment
must be a binary or real numeric vector with no NAs.
...
: Other parameters passed to causal_forest
.
See its documentation for details.
Other Learners:
Custom_chain
,
Lrnr_HarmonicReg
,
Lrnr_arima
,
Lrnr_bartMachine
,
Lrnr_base
,
Lrnr_bayesglm
,
Lrnr_caret
,
Lrnr_cv_selector
,
Lrnr_cv
,
Lrnr_dbarts
,
Lrnr_define_interactions
,
Lrnr_density_discretize
,
Lrnr_density_hse
,
Lrnr_density_semiparametric
,
Lrnr_earth
,
Lrnr_expSmooth
,
Lrnr_gam
,
Lrnr_ga
,
Lrnr_gbm
,
Lrnr_glm_fast
,
Lrnr_glm_semiparametric
,
Lrnr_glmnet
,
Lrnr_glmtree
,
Lrnr_glm
,
Lrnr_grf
,
Lrnr_gru_keras
,
Lrnr_gts
,
Lrnr_h2o_grid
,
Lrnr_hal9001
,
Lrnr_haldensify
,
Lrnr_hts
,
Lrnr_independent_binomial
,
Lrnr_lightgbm
,
Lrnr_lstm_keras
,
Lrnr_mean
,
Lrnr_multiple_ts
,
Lrnr_multivariate
,
Lrnr_nnet
,
Lrnr_nnls
,
Lrnr_optim
,
Lrnr_pca
,
Lrnr_pkg_SuperLearner
,
Lrnr_polspline
,
Lrnr_pooled_hazards
,
Lrnr_randomForest
,
Lrnr_ranger
,
Lrnr_revere_task
,
Lrnr_rpart
,
Lrnr_rugarch
,
Lrnr_screener_augment
,
Lrnr_screener_coefs
,
Lrnr_screener_correlation
,
Lrnr_screener_importance
,
Lrnr_sl
,
Lrnr_solnp_density
,
Lrnr_solnp
,
Lrnr_stratified
,
Lrnr_subset_covariates
,
Lrnr_svm
,
Lrnr_tsDyn
,
Lrnr_ts_weights
,
Lrnr_xgboost
,
Pipeline
,
Stack
,
define_h2o_X()
,
undocumented_learner
data(mtcars)
mtcars_task <- sl3_Task$new(
data = mtcars,
covariates = c("cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am"),
outcome = "mpg"
)
# simple prediction with lasso penalty
grfcate_lrnr <- Lrnr_grfcate$new(A = "vs")
grfcate_fit <- grfcate_lrnr$train(mtcars_task)
grf_cate_predictions <- grfcate_fit$predict()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.