Description Usage Arguments Details Value Examples
Bayesian Information Criterion (BIC) for tuning parameter selection.
1 | bicTuning(y, result)
|
y |
n by D matrix consisting of the data. |
result |
A |
The BIC selects the best tuning parameter out of the ones used in a
gsf
object by minimizing the following function
\textrm{BIC}(λ) = -2 l_n(\hat{\mathbf{Ψ}}_{λ}) + \textrm{df}(\hat{\mathbf{Ψ}}_{λ}) \log n
where l_n is the log-likelihood function, and
\hat{\mathbf{Ψ}}_{λ} is the set of estimated
parameters theta
and pii
corresponding to the tuning parameter λ.
\textrm{df}(\hat{\mathbf{Ψ}}_{λ}) denotes the degrees
of freedom of the estimates.
A list containing the selected tuning parameter and corresponding estimates, as well as a summary of the computed RBIC values, log-likelihood values, and corresponding orders of the estimates.
1 2 3 4 5 6 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.