Description Usage Arguments Details Value References Examples
Estimate the order of a finite mixture of multivariate normal densities with respect to the mean parameter, whose variance-covariance matrices are common but potentially unknown.
1 2 |
y |
n by D matrix consisting of the data, where n is the sample size and D is the dimension. |
lambdas |
Vector of tuning parameter values. |
K |
Upper bound on the true number of components.
If |
sigma |
D by D matrix, which is the starting value for the common
variance-covariance matrix. If |
arbSigma |
Equals |
... |
Additional control parameters. See the Details section. |
The following is a list of additional control parameters.
mu
D by K matrix of starting values where each column is the mean
vector for one component. If theta=NULL
, the starting
values are chosen using the procedure of Benaglia et al. (2009).
pii
Vector of size K whose elements must sum to 1, consisting of
the starting values for the mixing proportions.
If NULL
, it will be set to a discrete
uniform distribution with K support points.
penalty
Choice of penalty, which may be "SCAD
", "MCP
",
"SCAD-LLA
", "MCP-LLA
" or "ADAPTIVE-LASSO
".
Default is "SCAD
".
uBound
Upper bound on the tuning parameter of the proximal gradient descent algorithm.
C
Tuning parameter for penalizing the mixing proportions.
a
Tuning parameter for the SCAD or MCP penalty. Default is 3.7
.
convMem
Convergence criterion for the modified EM algorithm.
convPgd
Convergence criterion for the proximal gradient descent algorithm.
maxMem
Maximum number of iterations of the modified EM algorithm.
maxPgd
Maximum number of iterations of the proximal gradient descent algorithm.
verbose
If TRUE
, print updates while the function is running.
An object with S3 classes gsf
and normalLocGsf
,
consisting of a list with the estimates produced for every tuning
parameter in lambdas
.
Manole, T., Khalili, A. 2019. "Estimating the Number of Components in Finite Mixture Models via the Group-Sort-Fuse Procedure".
Benaglia, T., Chauveau, D., Hunter, D., Young, D. 2009. "mixtools: An R package for analyzing finite mixture models". Journal of Statistical Software. 32(6): 1-29.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | # Example 1: Seeds Data.
data(seeds)
y <- cbind(seeds[,2], seeds[,6])
set.seed(1)
out <- normalLocOrder(y, K=12, lambdas=seq(0.1, 1.7, 0.3), maxPgd=200, maxMem=500)
tuning <- bicTuning(y, out)
plot(out, gg=FALSE, eta=TRUE, vlines=TRUE, opt=tuning$result$lambda)
# Example 2: Old Faithful Data.
data(faithful)
set.seed(1)
out <- normalLocOrder(faithful, K=10,
lambdas=c(0.1, 0.25, 0.5, 0.75, 1.0, 2), penalty="MCP-LLA", a=2, maxPgd=200, maxMem=500)
# Requires ggplot2.
plot(out, gg=TRUE, eta=FALSE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.