estimateM.EoA: estimateM.EoA - Estimate mortalities using a classic EoA...

Description Usage Arguments Details Value Author(s) See Also Examples

View source: R/estimateM.EoA.R

Description

Estimate single-site or multiple-class M (=mortalities) parameter of a classic Evidence of Absence (EoA) using objective or informed priors. This routine differs from function eoar in that this routine does not allow covariates.

Usage

1
2
3
4
5
6
7
8
estimateM.EoA(
  X,
  beta.params,
  Mprior = "objective",
  Mprior.mean,
  Mprior.sd,
  conf.level = 0.9
)

Arguments

X

Total number of carcasses found.

beta.params

A list or data frame containing at a minimum components named $alpha and $beta. These are the alpha and beta parameters of a Beta distribution which is used for g=Pr(discovery).

Mprior

Character string specifying the prior distribution for M.

  • "objective" uses an objective prior very close to the Jeffery's prior for a Poisson, i.e., sqrt(m+1)-sqrt(m).

  • "normal" uses a truncated and descretized normal(Mprior.mean,Mprior.sd).

  • "gamma" uses a descretized gamma with mean Mprior.mean and standard deviation Mprior.sd. Note, this always assigns zero prior probability to M=0.

Mprior.mean

Mean of M prior when Mprior == "normal" or "gamma".

Mprior.sd

Standard deviation of M prior when Mprior == "normal" or "gamma".

conf.level

Confidence level for the confidence intervals on posterior estimates of M and g.

Details

This routine replicates the M estimates of the 'Single Year' and 'Multiple Classes' modules in package eoa. To repeat either case, input the composite g parameter's "a" and "b" parameters here, along with the number of carcasses "X", and specify the "objective" prior. See Examples.

Value

List containing the following components.

Author(s)

Trent McDonald

See Also

estimateL.EoA, plot.Mest

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
g.params <- list(alpha=600, beta=1200)
X <- 5
m.ests <- estimateM.EoA(X,g.params)
print(m.ests$M.est)

m.ests <- estimateM.EoA(X, g.params, Mprior = "normal", Mprior.mean = 50, Mprior.sd = 30)
print(m.ests$M.est)

m.ests <- estimateM.EoA(X, g.params, Mprior = "gamma", Mprior.mean = 50, Mprior.sd = 30)
print(m.ests$M.est)

tmcd82070/EoAR documentation built on July 13, 2021, 5:52 p.m.