Description Usage Arguments Details Value Author(s) References See Also Examples
Checks if the Q matrix is generically identified.
1 | is_q_generic(x)
|
x |
A |
If \mathbf{Q} is in the generically identifiable set \mathcal{Q}, then it must satisfy the following conditions:
(G1) The true \boldsymbol{Q} matrix takes the form of \boldsymbol{Q}^\top=≤ft[{\boldsymbol{Q}_1,\boldsymbol{Q}_2, (\boldsymbol{Q}^\ast)^\top}\right]^\top after row swapping, where \boldsymbol{Q}^\ast is a (J-2K)\times K binary matrix and \boldsymbol{Q}_1,\boldsymbol{Q}_2 \in \mathcal{Q}_g with
{\mathbb {Q}}_g =≤ft\{ \boldsymbol{Q} \in \{0,1\}^{J\times K}: \boldsymbol{Q} = \begin{bmatrix} * &{} 1 &{} *&{} … &{} *&{}… &{} *\\ * &{}*&{} 1 &{} … &{} *&{}… &{} *\\ \vdots &{} \vdots &{} &{} \ddots &{} &{} &{} \vdots \\ * &{} * &{} *&{} … &{} 1&{}… &{} *\\ \end{bmatrix}\right\}
where *
can be either 0 or 1.
(G2) For any k = 1, 2, …, K, there exists a j_k > 2K, such that q_{j_k, k} = 1.
A logical vector
James Joseph Balamuta and Steven Andrew Culpepper
Gu, Yuqi, and Gongjun Xu. "Sufficient and Necessary Conditions for the Identifiability of the Q-matrix." arXiv preprint arXiv:1810.03819 (2018).
The function implemented is a translation of the publicly available MATLAB code from https://github.com/yuqigu/Identify_Q into C++.
1 2 3 4 5 6 7 8 9 10 11 12 13 | ## Check if Q Matrix is Generically Identified ---
# Create a generically identified Q matrix
q3_generic = rbind(diag(3),
c(1, 1, 0),
c(1, 0, 1),
c(0, 1, 1),
c(1, 1, 1))
# Check if Q matrix is generic
is_q_generic(q3_generic)
# (Extra) Check if Q matrix is strict
is_q_strict(q3_generic)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.