Description Usage Arguments Value References See Also Examples
View source: R/CKL_covlagh_operator.R
Numerically calculate the lag-h covariance operators for functional time series dynamics defined by its harmonic Karhunen-Loeve expansion. The calculation is done by numerically integrating the inverse formula, i.e. the spectral density multiplied by exp(-1i*lag*omega)
1 2 3 4 5 6 7 8 | CKL_covlagh_operator(
harmonic_eigenvalues,
harmonic_eigenfunctions,
lag,
n_grid,
n_pc,
n_grid_freq = 1000
)
|
harmonic_eigenvalues |
function of two variables, |
harmonic_eigenfunctions |
function of three variables, |
lag |
The lag of the autocovariance to evaluate. |
n_grid |
Number of grid points (spatial resolution) of the discretisation of [0,1]^2 for the operator kernel to evaluate. |
n_pc |
The number of harmonic eigenfunctions to be used for the numerical integration at each frequency. |
n_grid_freq |
The grid points for the spectral density to evaluate at. Partition of [0,pi]. |
lag-h autocovariance operator, matrix of size (n_grid
,n_grid
)
Rubin, Panaretos. Simulation of stationary functional time series with given spectral density. arXiv, 2020
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | # Define the eigenvalues and eigenfunction of the functional time series
harmonic_eigenvalues <- function( omega, n ){ 1/( (1-0.9 *cos(omega)) * (n*pi)^2 ) }
harmonic_eigenfunctions <- function(omega, n, x){ sqrt(2)*sin( n*(pi*x-omega) ) }
# evaluation setting
lag <- 1 # change here to evaluate different lag-h autocovariance operator. put "lag <- 0" for lag-0 covariance operator
n_grid <- 101
n_pc <- 100
# calculate the lag-h autocovariance operator
covlagh <- CKL_covlagh_operator(harmonic_eigenvalues, harmonic_eigenfunctions, lag, n_grid, n_pc)
# visualise as a surface plot
persp(covlagh)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.