Code
print(sl_isotonic)
Message
-- Probability Calibration
Method: Isotonic regression calibration
Type: Binary
Source class: Data Frame
Data points: 1,010
Unique Predicted Values: 78
Truth variable: `Class`
Estimate variables:
`.pred_good` ==> good
`.pred_poor` ==> poor
Code
print(sl_isotonic_group)
Message
-- Probability Calibration
Method: Isotonic regression calibration
Type: Binary
Source class: Data Frame
Data points: 1,010, split in 2 groups
Unique Predicted Values: 77
Truth variable: `Class`
Estimate variables:
`.pred_good` ==> good
`.pred_poor` ==> poor
x `.by` cannot select more than one column.
i The following columns were selected:
i group1 and group2
Code
print(tl_isotonic)
Message
-- Probability Calibration
Method: Isotonic regression calibration
Type: Binary
Source class: Tune Results
Data points: 4,000, split in 8 groups
Unique Predicted Values: 92
Truth variable: `class`
Estimate variables:
`.pred_class_1` ==> class_1
`.pred_class_2` ==> class_2
Code
print(mtnl_isotonic)
Message
-- Probability Calibration
Method: Isotonic regression calibration
Type: Multiclass (1 v All)
Source class: Tune Results
Data points: 5,000, split in 10 groups
Truth variable: `class`
Estimate variables:
`.pred_one` ==> one
`.pred_two` ==> two
`.pred_three` ==> three
x This function does not work with grouped data frames.
i Apply `dplyr::ungroup()` and use the `.by` argument.
Code
print(sl_logistic)
Message
-- Probability Calibration
Method: Isotonic regression calibration
Type: Regression
Source class: Data Frame
Data points: 2,000
Unique Predicted Values: 47
Truth variable: `outcome`
Estimate variables:
`.pred` ==> predictions
Code
print(sl_logistic_group)
Message
-- Probability Calibration
Method: Isotonic regression calibration
Type: Regression
Source class: Data Frame
Data points: 2,000, split in 10 groups
Unique Predicted Values: 18
Truth variable: `outcome`
Estimate variables:
`.pred` ==> predictions
x `.by` cannot select more than one column.
i The following columns were selected:
i group1 and group2
Code
print(sl_boot)
Message
-- Probability Calibration
Method: Bootstrapped isotonic regression calibration
Type: Binary
Source class: Data Frame
Data points: 1,010
Truth variable: `Class`
Estimate variables:
`.pred_good` ==> good
`.pred_poor` ==> poor
Code
print(sl_boot_group)
Message
-- Probability Calibration
Method: Bootstrapped isotonic regression calibration
Type: Binary
Source class: Data Frame
Data points: 1,010, split in 2 groups
Truth variable: `Class`
Estimate variables:
`.pred_good` ==> good
`.pred_poor` ==> poor
x `.by` cannot select more than one column.
i The following columns were selected:
i group1 and group2
Code
print(tl_isotonic)
Message
-- Probability Calibration
Method: Bootstrapped isotonic regression calibration
Type: Binary
Source class: Tune Results
Data points: 4,000, split in 8 groups
Truth variable: `class`
Estimate variables:
`.pred_class_1` ==> class_1
`.pred_class_2` ==> class_2
Code
print(mtnl_isotonic)
Message
-- Probability Calibration
Method: Bootstrapped isotonic regression calibration
Type: Multiclass (1 v All)
Source class: Tune Results
Data points: 5,000, split in 10 groups
Truth variable: `class`
Estimate variables:
`.pred_one` ==> one
`.pred_two` ==> two
`.pred_three` ==> three
x This function does not work with grouped data frames.
i Apply `dplyr::ungroup()` and use the `.by` argument.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.