Code
print(nope_reg)
Message
-- Regression Calibration
Method: No calibration
Source class: Data Frame
Data points: 2,000
Truth variable: `outcome`
Estimate variable: `.pred`
Code
print(nope_reg_group)
Message
-- Regression Calibration
Method: No calibration
Source class: Data Frame
Data points: 2,000, split in 2 groups
Truth variable: `outcome`
Estimate variable: `.pred`
x `.by` cannot select more than one column.
i The following columns were selected:
i group1 and group2
`...` must be empty.
x Problematic argument:
* smooth = TRUE
Code
print(nope_binary)
Message
-- Probability Calibration
Method: No calibration
Type: Binary
Source class: Data Frame
Data points: 1,010
Truth variable: `Class`
Estimate variables:
`.pred_good` ==> good
`.pred_poor` ==> poor
The selectors in `estimate` resolves to 1 values (".pred_poor") but there are 2 class levels ("good" and "poor").
x `.by` cannot select more than one column.
i The following columns were selected:
i group1 and group2
Code
print(nope_multi)
Message
-- Probability Calibration
Method: No calibration
Type: Multiclass
Source class: Data Frame
Data points: 110
Truth variable: `Species`
Estimate variables:
`.pred_bobcat` ==> bobcat
`.pred_coyote` ==> coyote
`.pred_gray_fox` ==> gray_fox
x `.by` cannot select more than one column.
i The following columns were selected:
i group1 and group2
Code
print(nope_reg)
Message
-- Regression Calibration
Method: No calibration
Source class: Tune Results
Data points: 750, split in 10 groups
Truth variable: `outcome`
Estimate variable: `.pred`
`...` must be empty.
x Problematic argument:
* do_something = FALSE
Code
print(nope_binary)
Message
-- Probability Calibration
Method: No calibration
Type: Binary
Source class: Tune Results
Data points: 4,000, split in 8 groups
Truth variable: `class`
Estimate variables:
`.pred_class_1` ==> class_1
`.pred_class_2` ==> class_2
Code
print(nope_multi)
Message
-- Probability Calibration
Method: No calibration
Type: Multiclass
Source class: Tune Results
Data points: 5,000, split in 10 groups
Truth variable: `class`
Estimate variables:
`.pred_one` ==> one
`.pred_two` ==> two
`.pred_three` ==> three
x This function does not work with grouped data frames.
i Apply `dplyr::ungroup()` and use the `.by` argument.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.