# Setup parameters to generate the data
set.seed(1)
censoring.rate <- 40
p <- 2
n <- 2000
m <- 4
simu.setting <- "HD-With-Covariates"
qvs <- qvs.values(p,m)
## generate the data
data.gen <- GenerateData(n,p,m,qvs,censoring.rate,simu.setting)
x <- data.gen$x
delta <- data.gen$delta
q <- data.gen$q
ww <- data.gen$ww
zz <- data.gen$zz
## Estimation procedures to run to estimate F(t|t0,z,w)
update.qs <- FALSE
run.NPMLEs <- TRUE
run.NPNA <- TRUE
run.NPNA_avg <- FALSE
run.NPNA_wrong <- FALSE
run.OLS <- FALSE
run.WLS <- FALSE
run.EFF <- FALSE
run.EMPAVA <- FALSE
## The distribution function we are estimating is F(t|t0,z,w).
tval <- seq(0,80,by=5) ## tval refers to "t" in F(t|t0,z,w)
tval0 <- c(0,20,30,40,50) ##tval0 refers to "t0" in F(t|t0,z,w)
z.use <- c(0,1) ## z.use refers to "z" in F(t|t0,z,w)
w.use <- seq(35,55,by=1) ## w.use refers to "w" in F(t|t0,z,w)
## Setup to compute AUC/BS as in Garcia and Parast (2020). Only for simulated data.
run.prediction.accuracy <- TRUE
do_cross_validation_AUC_BS <- FALSE
know.true.groups <- TRUE
true.group.identifier <- data.gen$true.group.identifier
## Perform the estimation
estimators.out <- stride.estimator(n,m,p,qvs,q,
x,delta,ww,zz,
run.NPMLEs,
run.NPNA,
run.NPNA_avg,
run.NPNA_wrong,
run.OLS,
run.WLS,
run.EFF,
run.EMPAVA,
tval,tval0,
z.use,w.use,
update.qs,
know.true.groups,
true.group.identifier,
run.prediction.accuracy,
do_cross_validation_AUC_BS)
## Show results for the estimates
## estimators.out$Ft.estimate
## estimators.out$St.estimate
## Show results for prediction accuracy AUC and BS measures (only valid for simulated data
## where we know the true.group.identifiers.)
## estimators.out$Ft.AUC.BS
## estimators.out$St.AUC.BS
## NOT RUN
## Do bootstrap variance
#nboot <- 100
#variance.estimation <- TRUE
#varboot <- stride.bootstrap.variance(
# nboot,n,m,p,qvs,q,
# x,delta,ww,zz,
# run.NPMLEs,
# run.NPNA,
# run.NPNA_avg,
# run.NPNA_wrong,
# run.OLS,
# run.WLS,
# run.EFF,
# run.EMPAVA,
# tval,tval0,
# z.use,w.use,
# update.qs,
# know.true.groups,
# true.group.identifer,
# estimator_Ft=estimators.out$Ft.estimate,
# estimator_St=estimators.out$St.estimate,
# AUC_BS_Ft=estimators.out$Ft.AUC.BS,
# AUC_BS_St=estimators.out$St.AUC.BS,
# run.prediction.accuracy,
# do_cross_validation_AUC_BS=FALSE)
## Show results for the bootstrap variances of the estimates
## varboot$Ft.estimate.boot
## varboot$St.estimate.boot
## Show results for the bootstrap variances of the prediction accuracy measures, AUC and BS
## varboot$Ft.AUC.BS.boot
## varboot$St.AUC.BS.boot
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.