Man pages for tpq/caress
Caress, a Gentler Introduction to Keras

ascendPerform A Single Gradient Ascent
buildTrain a Keras Model
constraint_all_onesConstrain All Weights to One
constraint_all_zerosConstrain All Weights to Zero
constraint_cols_to_unit_sumConstrain Columns to Unit Sum
constraint_rows_to_unit_sumConstrain Rows to Unit Sum
constraint_runifConstrain All Weights to Randomize
from_inputCreate Input Layer
get_incoming_layer_nameGet Incoming Layer Name
get_layer_gradientGet the Gradient Associated with a Layer
get_layer_lossGet the Loss Associated with a Layer
get_layer_namesGet Layer Names
get_layer_outputGet Layer Output
get_layer_weightsGet Layer Weights
layer2indexFind Index for Layer Name
layer_kernel_conv2dPerform Kernel Convolution
layer_kernel_dotPerform Kernel Dot Product
layer_learnable_arrayInitialize Learnable Layer
layer_orthogonal_toCreate Orthogonal Layer
layer_pairwise_residualCreate Pairwise Layer
layer_pairwise_rmseCreate Pairwise Layer
layer_pseudo_embedCreate an Embedding Matrix
layer_to_dense_DeepTRIAGEApply a DeepTRIAGE Layer
layer_to_dense_stereoSplit Model into Two Parallel Layers
layer_to_dense_stereo_and_addSplit Model into Two Parallel Layers
layer_to_dense_stereo_and_catSplit Model into Two Parallel Layers
layer_to_dense_stereo_and_diffSplit Model into Two Parallel Layers
model_decodeDecode Output of Any Layer
model_mirrorCopy Weights from Another Model
preparePrepare a Keras Model
sample_randomSplit the Training and Test Set
set_layer_weightsSet Layer Weights
to_categorical_invertMake Categorical Mask
to_categorical_maskMake Categorical Mask
to_lossGet Loss for Output
to_metricGet Metric for Output
to_outputCreate Output Layer
type_of_yGet Type for Y
tpq/caress documentation built on March 11, 2021, 8:03 p.m.