layer_to_dense_DeepTRIAGE: Apply a DeepTRIAGE Layer

Description Usage Arguments

View source: R/2-layers-DeepTRIAGE.R

Description

This function applies a variant of the DeepTRIAGE attention mechanism to the incoming layer (see DOI:10.1101/533406). This implementation differs slightly from the publication in that all layers have the same activation function and the random embedding weights are optionally learnable.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
layer_to_dense_DeepTRIAGE(
  object,
  result_dim,
  embed_dim = result_dim * 4,
  random_embedding = FALSE,
  hidden_dim = 32,
  hidden_activation = "tanh",
  hidden_dropout = 0.5,
  name = NULL
)

Arguments

object

A keras model.

result_dim

An integer. The size of the final layer.

embed_dim

An integer. The size of the final embedding matrix will equal the input dimension times the embedding dimension.

random_embedding

A boolean. Toggles whether to freeze the embedding matrix with random values. Otherwise, the embedding matrix is trainable.

hidden_dim

An integer. The size of the hidden layers.

hidden_activation

A string. The activation for the hidden layers.

hidden_dropout

A numeric. The dropout for the hidden layers.

name

A string. The prefix label for all layers.


tpq/caress documentation built on March 11, 2021, 8:03 p.m.