Description Usage Arguments Value Examples
View source: R/2-layers-learnable.R
This function creates a layer of learnable weights. It requires connection to an input layer, but does not use the input. Instead, the values of the layer are the manifestation of learnable weights.
1 | layer_learnable_array(input, array_dim, name = NULL)
|
input |
The incoming layer. |
array_dim |
The dimensions of the learnable kernel. |
name |
A string. The prefix label for all layers. |
A layer of learnable weights.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | library(keras)
library(caress)
set.seed(1)
index <- sample(1:nrow(iris))
x <- as.matrix(iris[index,1:4])
y <- to_categorical(as.numeric(iris[index,5])-1)
k_clear_session()
input <- from_input(x)
weight <- input %>%
layer_learnable_array(4) %>%
layer_reshape(c(4,1))
target <- layer_kernel_dot(input, weight) %>%
layer_flatten() %>%
to_output(y)
m <- prepare(input, target)
build(m, x, y, batch_size = 4, epochs = 100)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.