knitr::opts_chunk$set(echo = TRUE)
library(HelpersforDESeq2) data_dir <- system.file("extdata/", package = "HelpersforDESeq2") res1 <- read.delim(paste0(data_dir, "res.HighMLEpATP-HighMLEmATP.txt"), row.names = 1, stringsAsFactors = F) res2 <- read.delim(paste0(data_dir, "res.LowMLEpATP-LowMLEmATP.txt"), row.names = 1, stringsAsFactors = F) res1$log10baseMean <- log10(res1$baseMean+1) res2$log10baseMean <- log10(res2$baseMean+1) head(res1) head(res2)
par(mfrow=c(1,2), mar = c(4,4,2,2), oma = c(1,1,1,1), mgp = c(2,1,0)) plot(res1$log10baseMean, res1$log2FoldChange, main = "ugly?") plottingMA(res = res1, main_title = "better?", selection_ids = c("roX1","roX2"), selection_id_type = "gene_symbol", selection_point_size = 1, selection_text_label = TRUE, selection_shadow = FALSE, xlims = c(0, 6), ylims = c(-10,10), x_axis_by = 2, padj_cutoff = 0.01, show_legend = TRUE)
par(mfrow=c(1,1), mar = c(4,4,2,2), oma = c(4,4,4,4), mgp = c(2,1,0)) plot(res1$log10baseMean, res1$log2FoldChange)
par(mfrow=c(1,1), mar = c(4,4,2,2), oma = c(4,4,4,4), mgp = c(2,1,0)) plot(res1$log10baseMean, res1$log2FoldChange, xlab = "log10 mean counts", ylab = "log2 fold change", xlim = c(0,6), ylim = c(-10,10), col = rgb(0.7,0.7,0.7,0.5), pch=19, cex = 0.25) abline(h=0, col="grey32")
par(mfrow=c(1,1), mar = c(4,4,2,2), oma = c(4,4,4,4), mgp = c(2,1,0)) plot(res1$log10baseMean, res1$log2FoldChange, xlab = "log10 mean counts", ylab = "log2 fold change", xlim = c(0,6), ylim = c(-10,10), col = rgb(0.7,0.7,0.7,0.5), pch=19, cex = 0.25) abline(h=0, col="grey32") selection_ids <- c("roX1","roX2") selection_vector <- res1$gene_symbol %in% selection_ids selection_color <- rgb(0.9,0.6,0,1) points(res1$log10baseMean[selection_vector], res1$log2FoldChange[selection_vector], col = selection_color, pch=19, cex = 1.0) legend("topright", legend = "labeled", col = selection_color, bg = "white", border = NA, bty = "n", cex = 0.8, pch = 19)
par(mfrow=c(1,1), mar = c(4,4,2,2), oma = c(4,4,4,4), mgp = c(2,1,0)) plot(res1$log10baseMean, res1$log2FoldChange, xlab = "log10 mean counts", ylab = "log2 fold change", xlim = c(0,6), ylim = c(-10,10), col = rgb(0.7,0.7,0.7,0.5), pch=19, cex = 0.25) abline(h=0, col="grey32") selection_ids <- c("roX1","roX2") selection_vector <- res1$gene_symbol %in% selection_ids selection_color <- rgb(0.8,0,0,1) points(res1$log10baseMean[selection_vector], res1$log2FoldChange[selection_vector], col = selection_color, pch=19, cex = 1.0) text(res1$log10baseMean[selection_vector], res1$log2FoldChange[selection_vector], res1$gene_symbol[selection_vector], col = selection_color, adj = c(0,-0.5)) legend("topright", legend = "labeled", col = selection_color, bg = "white", border = NA, bty = "n", cex = 0.8, pch = 19)
par(mfrow=c(1,1), mar = c(4,4,2,2), oma = c(4,4,4,4), mgp = c(2,1,0)) plot(res1$log10baseMean, res1$log2FoldChange, xlab = "log10 mean counts", ylab = "log2 fold change", xlim = c(0,6), ylim = c(-10,10), col = rgb(0.7,0.7,0.7,0.5), pch=19, cex = 0.25) abline(h=0, col="grey32") selection_vector <- res1$padj < 0.01 points(res1$log10baseMean[selection_vector], res1$log2FoldChange[selection_vector], col = selection_color, pch=19, cex = 0.25) legend("topright", legend = "significant", col = selection_color, bg = "white", border = NA, bty = "n", cex = 0.8, pch = 19)
par(mfrow=c(1,2), mar = c(4,4,2,2), oma = c(1,1,1,1), mgp = c(2,1,0)) plottingMAbasics <- function(res, padj_cutoff = 0.01){ plot(res$log10baseMean, res$log2FoldChange, xlab = "log10 mean counts", ylab = "log2 fold change", xlim = c(0,6), ylim = c(-10,10), col = rgb(0.7,0.7,0.7,0.5), pch=19, cex = 0.25) abline(h=0, col="grey32") selection_vector <- res$padj < padj_cutoff points(res$log10baseMean[selection_vector], res$log2FoldChange[selection_vector], col = selection_color, pch=19, cex = 0.25) legend("topright", legend = "significant", col = selection_color, bg = "white", border = NA, bty = "n", cex = 0.8, pch = 19) } plottingMAbasics(res1) plottingMAbasics(res2)
par(mfrow=c(1,1), mar = c(4,4,2,2), oma = c(4,4,4,4), mgp = c(2,1,0)) res_file_name <- "res.HighMLEpATP-HighMLEmATP.txt" res_tmp <- read.delim(paste0(data_dir, res_file_name), row.names = 1, stringsAsFactors = F) res_name <- gsub(".txt","", res_file_name) assign(res_name, res_tmp) plottingMA(res = get(res_name), main_title = gsub("res.","",res_name), selection_ids = c("roX1","roX2"), selection_id_type = "gene_symbol", selection_point_size = 1, selection_text_label = TRUE, selection_shadow = FALSE, xlims = c(0, 6), ylims = c(-10,10), x_axis_by = 2, padj_cutoff = 0.01, show_legend = TRUE)
par(mfrow=c(1,1), mar = c(4,4,2,2), oma = c(4,4,4,4), mgp = c(2,1,0)) res_merged <- merge(res1, res2, by = "row.names") plot(res_merged$log2FoldChange.x, res_merged$log2FoldChange.y, xlab = "log2FC res1", ylab = "log2FC res2", xlim = c(-6,6), ylim = c(-6,6), col = rgb(0.7,0.7,0.7,0.5), pch=19, cex = 0.25) abline(h=0, v=0, col="grey32") abline(coef = c(0,1), col="grey32", lty=2) selection_ids = c("roX1","roX2") selection_vector <- res_merged$gene_symbol.x %in% selection_ids selection_color <- rgb(0.8,0,0,1) points(res_merged$log2FoldChange.x[selection_vector], res_merged$log2FoldChange.y[selection_vector], col = selection_color, pch=19, cex = 1.0) text(res_merged$log2FoldChange.x[selection_vector], res_merged$log2FoldChange.y[selection_vector], res_merged$gene_symbol.x[selection_vector], col = selection_color, adj = c(0,-0.5)) legend("topleft", legend = "labeled", col = selection_color, bg = "white", cex = 1, pch = 19)
par(mfrow=c(1,1), mar = c(5,5,1,1), oma = c(4,4,4,4), mgp = c(3,1,0)) res_file_names <- c("res.HighMLEpATP-HighMLEmATP.txt", "res.LowMLEpATP-LowMLEmATP.txt") for(res_file_name in res_file_names){ res_tmp <- read.delim(paste0(data_dir, res_file_name), row.names = 1, stringsAsFactors = F) res_name <- gsub(".txt","", res_file_name) assign(res_name, res_tmp) } res_names <- ls(pattern = "^res\\.") res_names plotLog2FC(res1 = get(res_names[1]), res2 = get(res_names[2]), main_title = "", x_label = paste("log2FC \n", gsub("res.","",res_names[1])), y_label = paste("log2FC \n", gsub("res.","",res_names[2])), lims = c(-6,6), point_size = 0.25, selection_ids = c("roX1","roX2"), selection_id_type = "gene_symbol", selection_point_size = 1, selection_legend = "labeled", selection_text_label = TRUE)
Link: https://github.com/tschauer/HelpersforDESeq2/tree/master/R
plottingMA plotLog2FC
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.