knitr::opts_chunk$set(echo = TRUE)

Load Example Results

library(HelpersforDESeq2)

data_dir <- system.file("extdata/", package = "HelpersforDESeq2")

res_files <- file.path(data_dir, list.files(path = data_dir, pattern = "^res\\."))

for(i in seq_along(res_files)){

        res_name <- gsub(".txt","",gsub(".*res.","res.", res_files[i]))
        res_tmp <- read.delim(res_files[i], row.names = 1, stringsAsFactors = F)

        assign(res_name, res_tmp)

}

res_names <- ls(pattern = "^res\\.")

head(res_names)

head(get(res_names[1]))

Load Transcripts of Interest

snoRNA_snopy <- read.table(file.path(data_dir, "snoRNA_snopy.txt"), 
                           header = T, sep = "\t", stringsAsFactors = FALSE)

mito_genes <- get(res_names[1])$gene_symbol[get(res_names[1])$chr %in% c("mitochondrion_genome")]

MA Plot

par(mfrow=c(2,2), mar = c(4,4,2,2), oma = c(1,1,1,1), mgp = c(2,1,0))

for(res_name in res_names[c(2,3,1,4)]){

        plottingMA(res = get(res_name),
                   main_title = gsub("res.","",res_name),
                   selection_ids = c("roX1","roX2"),
                   selection_id_type = "gene_symbol",
                   selection_point_size = 0.75,
                   selection_text_label = TRUE,
                   selection_shadow = FALSE,
                   xlims = c(0, 6),
                   ylims = c(-10,10),
                   x_axis_by = 2,
                   padj_cutoff = 0.01,
                   show_legend = TRUE)
}
par(mfrow=c(1,1), mar = c(4,4,2,2), oma = c(4,4,4,4), mgp = c(2,1,0))

res_name <- "res.HighMLEpATP-HighMLEmATP"

# alternative colors
plottingMA(res =  get(res_name),
           main_title = gsub("res.","",res_name),
           point_color = rgb(0,0,0,0.2), 
           sign_point_color = rgb(0.8,0,0,0.5),
           selection_point_color = rgb(0.7,0.7,0.7),
           selection_sign_point_color = rgb(0.9,0.6,0), 
           selection_ids = c("roX1","roX2"),
           selection_id_type = "gene_symbol",
           selection_point_size = 1,
           selection_text_label = TRUE,
           selection_shadow = TRUE,
           xlims = c(0, 6),
           ylims = c(-10,10),
           x_axis_by = 2,
           padj_cutoff = 0.01,
           show_legend = TRUE)

Density Plot of log2FC

par(mfrow=c(2,2), mar = c(4,4,2,2), oma = c(1,1,1,1), mgp = c(2,1,0))

for(res_name in res_names[c(2,3)]){

        plotDens(res = get(res_name),
                 main_title = gsub("res.","",res_name),
                 selection_ids = mito_genes,
                 selection_id_type = "gene_symbol",
                 selection_color = rgb(0.1,0.1,0.9,1),
                 selection_legend = "Mito Genes",
                 xlims = c(-6,6),
                 ylims = c(0,1),
                 x_label = "log2FC")
}

res_name = "res.LowMLEpATP-LowMLEmATP"

for(tx_type in c("H/ACA", "C/D")){

        plotDens(res = get(res_name),
                 main_title = gsub("res.","",res_name),
                 selection_ids = snoRNA_snopy$snoRNA.name[snoRNA_snopy$Box == tx_type],
                 selection_id_type = "gene_symbol",
                 selection_color = rgb(0.7,0,0.9,1),
                 selection_legend = tx_type,
                 xlims = c(-6,6),
                 ylims = c(0,1.2),
                 x_label = "log2FC") 
}

log2FC - log2FC Plot

par(mfrow=c(2,2), mar = c(5,5,1,1), oma = c(1,1,1,1), mgp = c(3,1,0))

res1_name = "res.HighMLEpATP-Input"
res2_name = "res.LowMLEpATP-Input"

plotLog2FC(res1 = get(res1_name),
           res2 = get(res2_name),
           main_title = "",
           x_label = paste("log2FC \n", gsub("res.","",res1_name)),
           y_label = paste("log2FC \n", gsub("res.","",res2_name)),
           lims = c(-6,6),
           point_size = 0.25,
           selection_ids = c("roX1","roX2"),
           selection_id_type = "gene_symbol",
           selection_point_size = 1,
           selection_legend = NULL,
           selection_text_label = TRUE) 

plotLog2FC(res1 = get(res1_name),
           res2 = get(res2_name),
           main_title = "",
           x_label = paste("log2FC \n", gsub("res.","",res1_name)),
           y_label = paste("log2FC \n", gsub("res.","",res2_name)),
           lims = c(-6,6),
           point_size = 0.25,
           selection_ids = mito_genes,
           selection_id_type = "gene_symbol",
           selection_color = rgb(0.1,0.1,0.9,1),
           selection_point_size = 1,
           selection_legend = "Mito Genes",
           selection_text_label = FALSE) 


res1_name = "res.HighMLEpATP-HighMLEmATP"
res2_name = "res.LowMLEpATP-LowMLEmATP"

for(tx_type in c("H/ACA", "C/D")){

        plotLog2FC(res1 = get(res1_name),
                   res2 = get(res2_name),
                   main_title = "",
                   x_label = paste("log2FC \n", gsub("res.","",res1_name)),
                   y_label = paste("log2FC \n", gsub("res.","",res2_name)),
                   lims = c(-6,6),
                   point_size = 0.25,
                   selection_ids = snoRNA_snopy$snoRNA.name[snoRNA_snopy$Box == tx_type],
                   selection_id_type = "gene_symbol",
                   selection_color = rgb(0.7,0,0.9,1),
                   selection_point_size = 0.5,
                   selection_legend = tx_type,
                   selection_text_label = FALSE) 
}

Gene Ontology

library(topGO)
library(org.Dm.eg.db)

res_name = "res.HighMLEpATP-Input"

all_genes <- factor(as.integer(get(res_name)$padj < 0.01 & get(res_name)$log2FoldChange > 1.25))
names(all_genes) <- mapIds(x = org.Dm.eg.db, keys = rownames(get(res_name)), keytype = "FLYBASE", column = "SYMBOL")

head(all_genes,10)

gt <- makeGOTable(all_genes = all_genes,
                  shown_terms = 20,
                  min_signficant = 5,
                  select_ontology = "CC",
                  select_organism = "org.Dm.eg.db",
                  select_ID = "SYMBOL")


gt[1:5,]


plotGObBubbles(gt = gt, 
               main_title = gsub("res.","", res_name))
sessionInfo()


tschauer/HelpersforDESeq2 documentation built on Nov. 11, 2021, 3:10 a.m.