This repository is an archive of the proteomics data and source code used in the analyses by Courtland et al., 2021.
Please see soderling-lab/SwipProteomics for an extant version of this code.
# download the repository as an R package
devtools::install_github("twesleyb/SwipProteomics")
library(dplyr)
library(SwipProteomics)
# load the normalized data
data(swip_tmt)
# washc4's uniprot ID
data(swip)
# fit a model
fx <- log2(Intensity) ~ 0 + Condition + (1|Mixture)
fm <- lmerTest::lmer(fx,data=swip_tmt %>% subset(Protein==swip))
# create a contrast
LT <- getContrast(fm,"Mutant","Control")
# assess contrast
res <- lmerTestContrast(fm, LT) %>% mutate(Contrast='Mutant-Control') %>% unique()
knitr::kable(res)
|Contrast | log2FC| percentControl| SE| Tstatistic| Pvalue| DF| S2|isSingular | |:--------------|---------:|--------------:|---------:|----------:|------:|--:|--------:|:----------| |Mutant-Control | -1.401866| 0.3784393| 0.0264791| -52.94235| 0| 28| 0.007362|TRUE |
lmerTestContrast returns a data.frame with statistics from the model-based
contrast. The column isSingular=TRUE
in this case indicates that the variance
attributes to Mixture
is negligible.
## fit WASH Complex
library(dplyr)
library(SwipProteomics)
data(washc_prots)
# module-level model includes ranef Protein
fx1 <- log2(rel_Intensity) ~ 0 + Condition + (1|Protein)
# fit the model
fm1 <- lmerTest::lmer(fx1, data = swip_tmt %>% subset(Protein %in% washc_prots))
# assess overall 'Mutant-Control' comparison
res1 <- lmerTestContrast(fm1, LT) %>% mutate(Contrast='Mutant-Control') %>% unique()
knitr::kable(res)
|Contrast | log2FC| percentControl| SE| Tstatistic| Pvalue| DF| S2|isSingular | |:--------------|---------:|--------------:|---------:|----------:|------:|---:|---------:|:----------| |Mutant-Control | -1.379633| 0.3843165| 0.0392109| -35.18497| 0| 151| 0.0645747|FALSE |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.