View source: R/analysis_wrappers.R
IRF | R Documentation |
See VAR, RVAR, LP, and RLP documentation for details regarding models and structural errors.
IRF( model, horizon = 10, CI = c(0.1, 0.9), bootstrap.type = "auto", bootstrap.num = 100, bootstrap.parallel = FALSE, bootstrap.cores = -1 )
model |
VAR, RVAR, LP, or RLP class object |
horizon |
int: number of periods |
CI |
numeric vector: c(lower ci bound, upper ci bound) |
bootstrap.type |
string: bootstrapping technique to use ('auto', 'standard', or 'wild'); if auto then wild is used for IV or IV-short, else standard is used |
bootstrap.num |
int: number of bootstraps |
bootstrap.parallel |
boolean: create IRF draws in parallel |
bootstrap.cores |
int: number of cores to use in parallel processing; -1 detects and uses half the available cores |
data frame with columns target
, shock
, horizon
, response.lower
, response
, response.upper
; regime-based models return a list with a data frame per regime.
var_irf()
rvar_irf()
lp_irf()
rlp_irf()
# simple time series AA = c(1:100) + rnorm(100) BB = c(1:100) + rnorm(100) CC = AA + BB + rnorm(100) date = seq.Date(from = as.Date('2000-01-01'), by = 'month', length.out = 100) Data = data.frame(date = date, AA, BB, CC) # estimate VAR var = sovereign::VAR( data = Data, horizon = 10, freq = 'month', lag.ic = 'BIC', lag.max = 4 ) # impulse response function var.irf = sovereign::IRF(var) # local projection forecasts lp = sovereign::LP( data = Data, horizon = c(1:10), lag.ic = 'AIC', lag.max = 4, type = 'both', freq = 'month') # LP impulse response function lp.irf = sovereign::IRF(lp)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.