var_irf | R Documentation |
Estimate impulse response functions
var_irf( var, horizon = 10, CI = c(0.1, 0.9), bootstrap.type = "auto", bootstrap.num = 100, bootstrap.parallel = FALSE, bootstrap.cores = -1 )
var |
VAR output |
horizon |
int: number of periods |
CI |
numeric vector: c(lower ci bound, upper ci bound) |
bootstrap.type |
string: bootstrapping technique to use ('auto', 'standard', or 'wild'); if auto then wild is used for IV or IV-short, else standard is used |
bootstrap.num |
int: number of bootstraps |
bootstrap.parallel |
boolean: create IRF draws in parallel |
bootstrap.cores |
int: number of cores to use in parallel processing; -1 detects and uses half the available cores |
data.frame with columns target
, shock
, horizon
, response.lower
, response
, response.upper
VAR()
var_irf()
var_fevd()
var_hd()
RVAR()
rvar_irf()
rvar_fevd()
rvar_hd()
# simple time series AA = c(1:100) + rnorm(100) BB = c(1:100) + rnorm(100) CC = AA + BB + rnorm(100) date = seq.Date(from = as.Date('2000-01-01'), by = 'month', length.out = 100) Data = data.frame(date = date, AA, BB, CC) # estimate VAR var = sovereign::VAR( data = Data, horizon = 10, freq = 'month', lag.ic = 'BIC', lag.max = 4) # impulse response functions var.irf = sovereign::var_irf(var) # forecast error variance decomposition var.fevd = sovereign::var_fevd(var) # historical shock decomposition var.hd = sovereign::var_hd(var)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.