tests/testthat/test-splitplotdesigns.R

library(skpr)
test_that("Split-plot design categorical factors are retained", {
  cand <- expand.grid(Zoom = c("None", "Optical", "Digital"),

                      TargetType = c("Man Sized", "NATO Standard"),

                      Orientation = c("Side", "Front/Back"),

                      Movement = c("Stationary", "Moving"),

                      Illum = c("Day", "Night", "Low Light"))

  htc <- gen_design(candidateset = cand,

                    model = ~ Zoom,

                    trials = 10,

                    repeats = 10)

  DOE <- gen_design(candidateset = cand,

                     model = ~(Illum +Zoom + TargetType + Orientation + Movement ),

                     trials = 60,

                     splitplotdesign = htc,

                     repeats = 1)
  for(col in seq_len(ncol(DOE))) {
    expect_equal(class(DOE[,col]), "factor")
  }
  DOE2 <- gen_design(candidateset = cand,

                    model = ~(Illum + Zoom),

                    trials = 60,

                    splitplotdesign = htc,

                    repeats = 20)
  for(col in seq_len(ncol(DOE2))) {
    expect_equal(class(DOE2[,col]), "factor")
  }

  htc2 <- gen_design(candidateset = cand,

                    model = ~ Illum + Zoom + Illum:Zoom,

                    trials = 10,

                    repeats = 10)
  DOE3 <- gen_design(candidateset = cand,

                     model = ~(Illum +Zoom + Illum:Zoom + TargetType + Orientation + Movement ),

                     trials = 60,

                     splitplotdesign = htc2,

                     repeats = 20)
  for(col in seq_len(ncol(DOE3))) {
    expect_equal(class(DOE3[,col]), "factor")
  }
  vhtc <- gen_design(candidateset = cand,

                     model = ~ Illum,

                     trials = 10,

                     repeats = 10)
  htc3 <- gen_design(candidateset = cand,
                    model = ~ Illum + Zoom + Illum:Zoom,
                    trials = 20,
                    splitplotdesign = vhtc,
                    repeats = 10)
  splitsplitdesign <- gen_design(candidateset = cand,
                     model = ~(Illum +Zoom + Illum:Zoom + TargetType + Orientation + Movement ),
                     trials = 60,
                     splitplotdesign = htc3,
                     repeats = 20)
  for(col in seq_len(ncol(splitsplitdesign))) {
    expect_equal(class(splitsplitdesign[,col]), "factor")
  }
})

test_that("JMP SPD import works", {
    jmp_design_htc = read.csv(testthat::test_path("JMP_design_htc.csv"))
    expect_error(eval_design(jmp_design_htc, ~., 0.2, blocking = TRUE))
    expect_warning(eval_design_mc(jmp_design_htc, ~., 0.2, blocking = TRUE, nsim=100) ,"high_resolution_candidate_set")

    jmp_design_vhtc = read.csv(testthat::test_path("JMP_design_vhtc.csv"))
    expect_warning(eval_design(jmp_design_vhtc, ~., 0.2, blocking = TRUE) ,"high_resolution_candidate_set")
    expect_warning(eval_design_mc(jmp_design_vhtc, ~., 0.2, blocking = TRUE, nsim=100),"high_resolution_candidate_set")
  }
)

test_that("Test various configurations of blocking columns", {
  candset = expand.grid(a=c(1,-1),b=c(1,-1),c = c(1,-1), d= c(1,-1))
  set.seed(1)
  expect_silent({gen_design(candset, ~a, 6) |>
    gen_design(candset, ~a+b,trials=12, splitplotdesign=_) |>
    gen_design(candset, ~a+b+c,trials=24, splitplotdesign=_ )  ->
  rownames_spd})

  expect_warning({gen_design(candset, ~a, 6) |>
    gen_design(candset, ~a+b,trials=13, splitplotdesign=_) |>
    gen_design(candset, ~a+b+c,trials=24, splitplotdesign=_)  ->
  rownames_spd_onerep}, regexp = "replicate")

  set.seed(1)
  expect_silent({gen_design(candset, ~a, 6) |>
    gen_design(candset, ~a+b,trials=12, splitplotdesign=_) |>
    gen_design(candset, ~a+b+c,trials=24, splitplotdesign=_, add_blocking_columns = TRUE)  ->
  cols_spd})

  expect_warning({gen_design(candset, ~a, 6) |>
    gen_design(candset, ~a+b,trials=13, splitplotdesign=_) |>
    gen_design(candset, ~a+b+c,trials=24, splitplotdesign=_, add_blocking_columns = TRUE)  ->
  cols_spd_onerep}, regexp = "replicate")

  expect_silent({pow_rownames = eval_design(rownames_spd)})
  expect_silent({pow_rownames_onerep = eval_design(rownames_spd_onerep)})
  expect_warning({pow_cols = eval_design(cols_spd)}, regexp = "extra block column")
  expect_warning({pow_cols_onerep = eval_design(cols_spd_onerep)}, regexp = "extra block column")

  expect_equal(pow_rownames$power, pow_cols$power)
  expect_equal(pow_cols_onerep$power, pow_rownames_onerep$power)

  set.seed(1)
  expect_no_error({pow_rownames_mc = eval_design_mc(rownames_spd, nsim=100)})
  expect_no_error({pow_rownames_onerep_mc = eval_design_mc(rownames_spd_onerep, nsim=100)})
  set.seed(1)
  expect_warning({pow_cols_mc = eval_design_mc(cols_spd, nsim=100)}, regexp = "extra block column")
  expect_warning({pow_cols_onerep_mc = eval_design_mc(cols_spd_onerep, nsim=100)}, regexp = "extra block column")


  expect_equal(pow_rownames_mc$power, pow_cols_mc$power)
  expect_equal(pow_cols_onerep_mc$power, pow_rownames_onerep_mc$power)

  rownames_spd_copy = rownames_spd
  rownames_spd_copy$Block1 = rep(sample(1:8,8),each=3)
  rownames_spd_copy$Block2 = rep(sample(1:12,12),each=2)

  expect_warning({eval_design(rownames_spd_copy,blocking = T)}, regexp = "extra block columns")
  expect_warning({eval_design_mc(rownames_spd_copy,blocking = T, nsim=100)}, regexp = "extra block columns")
})
tylermorganwall/skpr documentation built on April 13, 2025, 5:35 p.m.