make.positive.control.plot: Make heatmaps of positive control correlations

View source: R/make.positive.control.plot.R

make.positive.control.plotR Documentation

Make heatmaps of positive control correlations

Description

Create heatmaps of correlations between target concentrations and actual counts of positive control probes.

Usage

make.positive.control.plot(correlations, covs = NULL, print.x.labels = TRUE)

Arguments

correlations

A data-frame of R squared values by sample ID. See output of positive.control.qc

covs

A data-frame of sample annotation used to create plot covariates. Recommended to use output of load.phenodata. Accepts sample 'Cartridge' and 'Type' information; requires 'SampleID' column to match to sample IDs in 'correlations' variable. Defaults to NULL

print.x.labels

Whether to display the sample IDs on the heatmap's x-axis. Defaults to TRUE

Details

Creates two heatmaps that display the sample R squared values, ascending.

Value

None

Author(s)

Cindy Yao and Emilie Lalonde

Examples

## Not run: 
	#load raw data
	data(NanoString.DNA.raw);
	data(PhenoData);

	# run QC
	r.squared <- positive.control.qc(raw.data = NanoString.DNA.raw);

	# plot results
	make.positive.control.plot(
		correlations = r.squared,
		covs = PhenoData
		);

## End(Not run)

uclahs-cds/public-R-NanoStringNormCNV documentation built on May 31, 2024, 9:09 p.m.