r Sys.Date()
The bedr package is a suite of tools for genomic interval processing. The philosophy is to wrap existing best practice bioinformatic software in order to provide a unifying analysis environment within R. bedr should be considered complimentary to native implementations of interval processing such GenomicRanges.
The advantages to this approach include:
bedr
including the required methods and parameters. The current implementation focuses on three excellent tools. For specifics on functionality please visit there online documentation, primary citation and biostar posts. To gain the functionality of these analytical engines you will need to have the programs installed and in your default PATH. In future versions the source code for these dependencies may be distributed together.
These utilities are the main components of the package and can be combined to perform powerful genome arithmetic. Description of these utilities and associated parameters can be found in R docs. Working examples of some of the key functions is covered below:
Loading of bedr package will indicate the presensece of bedtools, bedops and tabix libraries on your system. If these are not present, there is very little value in using bedr package. If you have installed these in a non-standard path/directory of your computer, please add these to PATH environment variable.
# load bedr library library("bedr");
N.B. Log info printed through verbose = T
(default, in almost all bedr methods) should be carefully assessed. Often, status=FAIL may just highlight a potential problem, and hence code continues to execute without a graceful failure. Therefore, please do read the log messages carefully.
First check if the regions are valid. This involves checking for "chr" prefix, data types, end > start position and for compliance to bed formats zero based start position. All checks can be turned off as required. The "chr" check is useful due to various human reference formats (NCBI vs UCSC) having different standards. This can result in unexpected results if comapring across specifications. Similarly, bed format uses a zero based start postion, but vcf's use a one based position. Therefore, a snp at position 100 would be chr1:100-100 in one based but chr1:99-100 in zero based format. Another common mistake relates to overlaps between adjacent intervals, for example in zero based setups chr1:10-100 does not intersect with chr1:100-110.
if (check.binary("bedtools")) { # get example regions index <- get.example.regions(); a <- index[[1]]; b <- index[[2]]; # region validation is.a.valid <- is.valid.region(a); is.b.valid <- is.valid.region(b); a <- a[is.a.valid]; b <- b[is.b.valid]; # print cat(" REGION a: ", a, "\n"); cat(" REGION b: ", b, "\n"); }
Generally, it's a good idea to confirm that you've sorted your inputs to avoid unexpected results and take advantage of optimized algorithms. For example merging and clustering require adjacent intervals. is.sorted.region
is convenient for explicit evaluation although it's done internally for core operations.
if (check.binary("bedtools")) { # check if already sorted is.sorted <- is.sorted.region(a); # sort lexographically a.sort <- bedr.sort.region(a); # sort naturally a.sort.natural <- bedr.sort.region(a, method = "natural"); # sort - explicit call using primary API function bedr() b.sort <- bedr( engine = "bedtools", input = list(i = b), method = "sort", params = "" ); # print cat(" REGION a: ", a.sort, "\n"); cat(" REGION b: ", a.sort.natural, "\n"); cat(" REGION c: ", b.sort, "\n"); }
Similarly, merging adjacent or overlapping regions is often required to avoid redundancy. Performing an intersection/join when you have redundant regions can cause unexpected results and hence best is to merge redundant regions.
if (check.binary("bedtools")) { # check if already merged (non-overlapping regions) is.merged <- is.merged.region(a.sort); is.merged <- is.merged.region(b.sort); # merge a.merge <- bedr.merge.region(a.sort); # merge - explicit call using primary API function bedr() b.merge <- bedr( engine = "bedtools", input = list(i = b.sort), method = "merge", params = "" ); # print cat(" REGION a: ", a.merge, "\n"); cat(" REGION b: ", b.merge, "\n"); }
The subtract utility identifies regions exclusive to one (first) set of regions. For instance, one might be interested in removing non-coding regions from gene regions.
if (check.binary("bedtools")) { # subtract a.sub1 <- bedr.subtract.region(a.merge, b.merge); # subtract - explicit call using primary API function bedr() a.sub2 <- bedr( input = list(a = a.merge, b = b.merge), method = "subtract", params = "-A" ); # print cat(" REGION a - sub1: ", a.sub1, "\n"); cat(" REGION a - sub2: ", a.sub2, "\n"); }
Finding genomic regions which overlap partially with another set of regions is an extremely useful requirement for various sequence analysis tasks e.g finding genes/SNPs which may fall in particular segments (e.g chromosomal bands).
if (check.binary("bedtools")) { # check if present in a region is.region <- in.region(a.merge, b.merge); # or alternatively R-like in command is.region <- a.merge %in.region% b.merge # print cat(" is.region: ", is.region, "\n"); }
The intersect/join function identifies sub-regions of first set which overlap with the second set of regions, and returns a table with chromosome name along with coordinates of overlapping sub-region. The bedr.join.multiple.region
function creates an intersect table for multiple regions displaying the overlapping regions along with a fast access truth table for all versus all regions.
if (check.binary("bedtools")) { # intersect / join a.int1 <- bedr.join.region(a.merge, b.merge); a.int2 <- bedr( input = list(a = a.sort, b = b.sort), method = "intersect", params = "-loj -sorted" ); # multiple join d <- get.random.regions(15, chr="chr1", sort = TRUE); a.mult <- bedr.join.multiple.region( x = list(a.merge, b.merge, bedr.sort.region(d)) ); # print cat(" REGION a intersect: \n"); print(a.int1); cat("\n"); cat(" REGION multi (a,b,c) intersect: \n"); print(a.mult); cat("\n"); }
When comparing (pairwise) the extent of overlap between a large collection of genomic regions, it becomes necessary to report the similarity (intersect) using a single quantitative measure. Bedtools implements two such statitics; jaccard
and reldist
(Favorov A et al.) which can be called through bedr
as shown below:
if (check.binary("bedtools")) { # compare a and b set of sequences jaccard.stats <- jaccard(a.sort, b.sort); reldist.stats <- reldist(a.sort, b.sort); # print cat(" JACCARD a & b: \n"); print(jaccard.stats); cat("\n"); cat(" RELDIST a & b: \n"); print(reldist.stats); cat("\n"); # even better way to run both jaccard and reldist, as well as estimate P value through random permutations jaccard.reldist.stats <- test.region.similarity(a.sort, b.sort, n = 40); cat(" JACCARD/RELDIST a & b: \n"); print(jaccard.reldist.stats); cat("\n"); }
For multiple genomic features/regions mapping to the exact locus (e.g SNPs), it is often useful to collapse their additional annotations into a single record. To collapse, one may be interested in using quantitative operations such as sum, mean, median (see bedtools for all the options) or simple concatenate multiple entries.
if (check.binary("bedtools")) { # read example regions file regions.file <- system.file("extdata/example-a-region.bed", package = "bedr"); a <- read.table(regions.file, header = FALSE, stringsAsFactors = FALSE); colnames(a) <- c("a.CHROM", "a.START", "a.END", "Score"); # sort a <- bedr.sort.region(a); # group by (on first three columns) the score in column 4. Concatenate scores a.collapsed <- bedr( input = list(i = a), method = "groupby", params = "-g 1,2,3 -c 4 -o collapse" ); # group by (on first three columns) the score in column 4. Compute mean a.mean <- bedr( input = list(i = a), method = "groupby", params = "-g 1,2,3 -c 4 -o mean" ); # print cat(" REGION a groupby (collapsed): \n"); print(a.collapsed); cat("\n"); cat(" REGION a groupby (mean): \n"); print(a.mean); cat("\n"); }
The example workflow below reads two VCF files from different variant callers, further limiting to structural variants only and finally identifying common calls.
if (check.binary("bedtools")) { VALID.SV.TYPES <- c('BND', 'CNV', 'DEL', 'DUP', 'INS', 'INV'); POSITION.COLUMNS <- c('CHROM', 'POS', 'END'); callerA.filename <- system.file("extdata/callerA.vcf.gz", package = "bedr"); callerB.filename <- system.file("extdata/callerB.vcf.gz", package = "bedr"); # read the VCF file callerA <- read.vcf(callerA.filename, split.info = TRUE)$vcf; callerB <- read.vcf(callerB.filename, split.info = TRUE)$vcf; # focus on SVs callerA <- callerA[which(callerA$SVTYPE %in% VALID.SV.TYPES), ]; callerB <- callerB[which(callerB$SVTYPE %in% VALID.SV.TYPES), ]; # convert to zero-based coordinates callerA$POS <- callerA$POS - 1; callerB$POS <- callerB$POS - 1; # find all overlapping pairs, retrieve size of overlap (bp) overlapping.pairs <- bedr.join.region( callerA[, POSITION.COLUMNS], callerB[, POSITION.COLUMNS], report.n.overlap = TRUE, check.chr = FALSE ); colnames(overlapping.pairs) <- c( 'a.CHROM', 'a.POS', 'a.END', 'b.CHROM', 'b.POS', 'b.END', 'Overlap' ); overlapping.pairs$b.POS <- as.numeric(overlapping.pairs$b.POS); overlapping.pairs$b.END <- as.numeric(overlapping.pairs$b.END); # compute a distance between overlapping pairs min.breakpoint.distances <- cbind( overlapping.pairs$a.POS - overlapping.pairs$b.POS, overlapping.pairs$a.END - overlapping.pairs$b.END ); min.breakpoint.distances <- apply( abs(min.breakpoint.distances), 1, min ); a.length <- overlapping.pairs$a.END - overlapping.pairs$a.POS; b.length <- overlapping.pairs$b.END - overlapping.pairs$b.POS; overlapping.pairs$distance <- (min.breakpoint.distances + abs(a.length - b.length)) / 2; # print cat(" OVERLAPPING PAIRS: \n"); print(head(overlapping.pairs)); cat("\n"); }
This example builds on the Example Workflow 1
, and annotates the structural variants with RefSeq gene identifiers if the variant falls within the gene body for instance. Limiting to chromosome 1 and 2 only. Lastly compare which genes were common between the calls generated by two variant callers.
if (check.binary("bedtools")) { # get Human RefSeq genes (Hg19) in BED format refseq.file <- system.file("extdata/ucsc.hg19.RefSeq.chr1-2.txt.gz", package = "bedr"); refseq <- read.table(refseq.file, header = FALSE, stringsAsFactors = FALSE); # sort Refseq and remove chr prefix refseq.sorted <- bedr.sort.region(refseq[, 1:4]); colnames(refseq.sorted) <- c(POSITION.COLUMNS, "Gene"); refseq.sorted$CHROM <- gsub("^chr", "", refseq.sorted$CHROM); # reuse the SV calls from workflow 1 and add gene identifiers to callerA callerA.annotated <- bedr.join.region( callerA[, POSITION.COLUMNS], refseq.sorted, report.n.overlap = TRUE, check.chr = FALSE ); colnames(callerA.annotated) <- c( 'a.CHROM', 'a.POS', 'a.END', 'Gene.CHROM', 'Gene.POS', 'Gene.END', 'Gene', 'Overlap' ); # reuse the SV calls from workflow 1 and add gene identifiers to callerB callerB.annotated <- bedr.join.region( callerB[, POSITION.COLUMNS], refseq.sorted, report.n.overlap = TRUE, check.chr = FALSE ); colnames(callerB.annotated) <- c( 'b.CHROM', 'b.POS', 'b.END', 'Gene.CHROM', 'Gene.POS', 'Gene.END', 'Gene', 'Overlap' ); # reinstate chr prefix to chromosome names callerA.annotated$a.CHROM <- paste('chr', callerA.annotated$a.CHROM, sep = ""); callerB.annotated$b.CHROM <- paste('chr', callerB.annotated$b.CHROM, sep = ""); # print cat(" CALLER A GENES (chr 1,2): \n"); print(head(callerA.annotated)); cat("\n"); cat(" CALLER B GENES (chr 1,2): \n"); print(head(callerB.annotated)); cat("\n"); }
Next, you may want to collapse multiple gene entries in one row. This can be done using groupby
utility.
options("warn" = -1); if (check.binary("bedtools")) { # collapse column 7 (Gene) against unique composite key (column 1, 2 and 3) callerA.annotated.grouped <- bedr( input = list(i = callerA.annotated), method = "groupby", params = "-g 1,2,3 -c 7 -o collapse" ); # collapse column 7 (Gene) against unique composite key (column 1, 2 and 3) callerB.annotated.grouped <- bedr( input = list(i = callerB.annotated), method = "groupby", params = "-g 1,2,3 -c 7 -o collapse" ); # print cat(" CALLER A GENES (chr 1,2) GROUPED: \n"); print(head(callerA.annotated.grouped)); cat("\n"); cat(" CALLER B GENES (chr 1,2) GROUPED: \n"); print(head(callerB.annotated.grouped)); cat("\n"); }
You may also want to summarise the counts of overlapping and unique sub-regions. This can be done by bedr.plot.region
method which displays the summary as a venn diagram.
if (check.binary("bedtools")) { # merge and plot overlapping regions between the two callers with genes # on chromosome 1 and 2 callerA.merged <- callerA.annotated[, c('a.CHROM', 'a.POS', 'a.END')]; callerB.merged <- callerB.annotated[, c('b.CHROM', 'b.POS', 'b.END')]; callerA.merged <- bedr.merge.region(callerA.merged); callerB.merged <- bedr.merge.region(callerB.merged); # plot (sub-regions exclusive to a and b, and sub-regions in common) bedr.plot.region( input = list( a = callerA.merged, b = callerB.merged ), params = list(lty = 2, label.col = "black", main = "Genes Overlap"), feature = 'interval', verbose = FALSE ); }
The venn diagram shows the number of sub-regions on chromosome 1 and 2 which are common between the two callers, and the ones which are exclusive to the callers.
In this example, we show bedr can be used to process CNA segmented data to estimate percent genome altered and identify minimal common regions. The copy-number data used is a subset of TCGA COAD study. Note: For efficiency reason, this is a very coarse example of calling recurrent copy number regions, and only to demonstrate how bedr can be used alongside other copy number tools.
if (check.binary("bedtools")) { # read copy number segmented (regions) data cna.file <- system.file("extdata/CNA.segmented.txt.gz", package = "bedr"); cna.data <- read.table(cna.file, header = TRUE, stringsAsFactors = FALSE); cna.data$Chromosome <- paste("chr", cna.data$Chromosome, sep = ""); # check if regions are valid valid.segments <- is.valid.region(cna.data[, c("Chromosome", "Start", "End")]); cat(" VALID REGIONS: ", length(which(valid.segments) == TRUE), "/", length(valid.segments), "\n"); # restrict to copy number regions with |log-ratio| > 0.10 cna.data <- cna.data[which(abs(cna.data$Segment_Mean) > 0.10), ]; # create a list data-structure for every patient's copy number data # and sort them cna.data.gain <- list(); cna.data.loss <- list(); pga.gain <- list(); pga.loss <- list(); sample.ids <- unique(cna.data$Sample); hg19.size <- 3137161264; for (sample.id in sample.ids) { # extract sample specific gains gain.index <- which(cna.data$Sample == sample.id & cna.data$Segment_Mean > 0); if (length(gain.index) > 0) { cna.data.gain[[sample.id]] <- cna.data[ gain.index, 2:4 ]; # sort cna.data.gain[[sample.id]] <- bedr.sort.region( x = cna.data.gain[[sample.id]], method = "natural", verbose = FALSE ); # estimate percent genome gained pga.gain[[sample.id]] <- sum( apply( cna.data.gain[[sample.id]], 1, FUN = function(x) { return( (as.numeric(x[3]) - as.numeric(x[2])) ); } ) ); pga.gain[[sample.id]] <- pga.gain[[sample.id]]/hg19.size*100; } # extract sample specific losses loss.index <- which(cna.data$Sample == sample.id & cna.data$Segment_Mean < 0); if (length(loss.index) > 0) { cna.data.loss[[sample.id]] <- cna.data[ loss.index, 2:4 ]; # sort cna.data.loss[[sample.id]] <- bedr.sort.region( x = cna.data.loss[[sample.id]], method = "natural", verbose = FALSE ); # estimate percent genome loss pga.loss[[sample.id]] <- sum( apply( cna.data.loss[[sample.id]], 1, FUN = function(x) { return( (as.numeric(x[3]) - as.numeric(x[2])) ); } ) ); pga.loss[[sample.id]] <- pga.loss[[sample.id]]/hg19.size*100; } } }
You may want to see the distribution of Percent Genome Altered (Gain and Loss), as shown below:
if (check.binary("bedtools")) { # set graphics params par(mfrow = c(1, 2), las = 1); # plot histograms of Gain and Loss frequencies hist(unlist(pga.gain), xlab = "Percent Gain", main = "Percent Genome Altered (Gain)"); hist(unlist(pga.loss), xlab = "Percent Loss", main = "Percent Genome Altered (Loss)"); }
Lets find minimal common regions either gained and deleted across patients:
if (check.binary("bedtools")) { # find minimal common regions (gain) mcr.gain <- bedr.join.multiple.region( x = cna.data.gain, species = "human", build = "hg19", check.valid = FALSE, check.sort = FALSE, check.merge = FALSE, verbose = FALSE ); # find minimal common regions (loss) mcr.loss <- bedr.join.multiple.region( x = cna.data.loss, species = "human", build = "hg19", check.valid = FALSE, check.sort = FALSE, check.merge = FALSE, verbose = FALSE ); # reorder by frequency of recurrence mcr.gain <- mcr.gain[order(as.numeric(mcr.gain$n.overlaps), decreasing = TRUE), ]; mcr.loss <- mcr.loss[order(as.numeric(mcr.loss$n.overlaps), decreasing = TRUE), ]; # print cat(" RECURRENT CNA GAINS \n"); print(head(mcr.gain[, 1:5])); cat("\n"); cat(" RECURRENT CNA LOSSES \n"); print(head(mcr.loss[, 1:5])); cat("\n"); }
In a nutshell, bedr offers an R-style interface to bedtools and bedops, and therefore, the extensive use cases and workflows manipulating genomic intervals using these tools can be implemented using bedr. If you would like to contribute a use case or have a feature request, please do not hesitate to contact us.
The examples here are in whole or part based upon data generated by The Cancer Genome Atlas pilot project established by the NCI and NHGRI. Information about TCGA and the investigators and institutions who constitute the TCGA research network can be found at https://cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.