hd.study: Analysis example using the simulated HD dataset

Description Usage Arguments Value References Examples

View source: R/simulated_data_analysis.R

Description

Analysis example using the simulated HD dataset

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
hd.study(
  simu.data = simu.dat,
  subid = "SUBJID",
  event = "event",
  tms = "TOTAL_MOTOR_SCORE",
  cag = "CAG",
  age = "AGE",
  gender = "gender",
  trans.age = "logAGE",
  m = 30,
  num.interp = 30,
  n = 80,
  newl = 30,
  mean.diff = 1,
  tolerance = 0.005,
  itermax = 20,
  iter = 0,
  boot.ci = TRUE
)

Arguments

simu.data

a simulated data set, see DATA.R for details.

subid

column name for the group id from your dataset.

event

column name for the event of interest from your dataset.

tms

column name for the total motor score from your dataset.

cag

column name for the cag repeats from your dataset.

age

column name for the age (time) from your dataset.

gender

column name for the gender from your dataset.

trans.age

log transformed age (time) from your dataset.

m

number of time points at which predictors are required for the longitudinal responses in the parametric NLME procedure

num.interp

number of pseudo-data points, which are unifromly generated within the observed data points.

n

number of sample size.

newl

a length of time points (log transformed ages) at which predictors are required for each individual longitudinal trajectory.

mean.diff

an initial tolerence for the convergence criterion. Default is 1.

tolerance

a parameter for the tolerence for the convergence criterion. Default is 0.009.

itermax

a parameter for the maximum number of iterations in the multi-stage nonparametric algorithm. Default is 20.

iter

initial number of iteration in the multi-stage nonparametric algorithm. The default is 0.

boot.ci

logical value: TRUE if the 95% bootstrap confidence intervals across all subjects are calcuated and plotted on the graph. Default is TRUE.

Value

a list of

References

U.Lee, R.J.Carroll, K.Marder, Y.Wang, T.P.Garcia. (2019+). Estimating Disease Onset from Change Points of Markers Measured with Error.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
library(HDChangePoint)
## a pseudo data set constructed by using the simulated data
data("PSEUDO_PREDICT_HD")
head(PSEUDO_PREDICT_HD)

## Specify the parameters to obtained the analysis results from the simulated dataset.
simu.dat<-PSEUDO_PREDICT_HD
subid="SUBJID";
event="event";
tms="TOTAL_MOTOR_SCORE";
cag="CAG";
age="AGE";
gender="gender";
trans.age="logAGE";
n=80;
m=45;
num.interp=45;
newl=45;
mean.diff=1;
tolerance=0.01;
itermax=20;
iter=0;

simu.analysis.results<-hd.study(simu.data=simu.dat, subid="SUBJID", event="event", 
                       tms="TOTAL_MOTOR_SCORE", cag="CAG", age="AGE", gender="gender", 
                       trans.age="logAGE",m=m, num.interp=num.interp, n=n, newl=newl,
                       mean.diff=mean.diff, tolerance=tolerance, itermax=itermax, iter=iter,
                       boot.ci=TRUE)

unkyunglee/HDChangePoint documentation built on Nov. 27, 2021, 2:57 p.m.