Description Usage Arguments Value References Examples
View source: R/simulated_data_analysis.R
Analysis example using the simulated HD dataset
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
simu.data |
a simulated data set, see |
subid |
column name for the group id from your dataset. |
event |
column name for the event of interest from your dataset. |
tms |
column name for the total motor score from your dataset. |
cag |
column name for the cag repeats from your dataset. |
age |
column name for the age (time) from your dataset. |
gender |
column name for the gender from your dataset. |
trans.age |
log transformed age (time) from your dataset. |
m |
number of time points at which predictors are required for the longitudinal responses in the parametric NLME procedure |
num.interp |
number of pseudo-data points, which are unifromly generated within the observed data points. |
n |
number of sample size. |
newl |
a length of time points (log transformed ages) at which predictors are required for each individual longitudinal trajectory. |
mean.diff |
an initial tolerence for the convergence criterion. Default is 1. |
tolerance |
a parameter for the tolerence for the convergence criterion. Default is 0.009. |
itermax |
a parameter for the maximum number of iterations in the multi-stage nonparametric algorithm. Default is 20. |
iter |
initial number of iteration in the multi-stage nonparametric algorithm. The default is 0. |
boot.ci |
logical value: TRUE if the 95% bootstrap confidence intervals across all subjects are calcuated and plotted on the graph. Default is TRUE. |
a list of
nonpara_summary_table4a 5 x 4 array of estimates, standard errors, t-values and p-values for the fixed effects of beta0
, CAG repeates and gender in the inflection point model and scale parameters of the random errors in the inflection point and the longitudinal models.
para_summary_table4a 7 x 4 array of estimates, standard errors, t-values and p-values for the fixed effects of theta1
, theta2
, beta0
, CAG repeates and gender and scale parameters of the random errors in the inflection point and the longitudinal models. The parametric NLME assumes the logistic model.
, which are similar to Table 4 and return Figure 1 in the paper (See the reference
).
U.Lee, R.J.Carroll, K.Marder, Y.Wang, T.P.Garcia. (2019+). Estimating Disease Onset from Change Points of Markers Measured with Error.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | library(HDChangePoint)
## a pseudo data set constructed by using the simulated data
data("PSEUDO_PREDICT_HD")
head(PSEUDO_PREDICT_HD)
## Specify the parameters to obtained the analysis results from the simulated dataset.
simu.dat<-PSEUDO_PREDICT_HD
subid="SUBJID";
event="event";
tms="TOTAL_MOTOR_SCORE";
cag="CAG";
age="AGE";
gender="gender";
trans.age="logAGE";
n=80;
m=45;
num.interp=45;
newl=45;
mean.diff=1;
tolerance=0.01;
itermax=20;
iter=0;
simu.analysis.results<-hd.study(simu.data=simu.dat, subid="SUBJID", event="event",
tms="TOTAL_MOTOR_SCORE", cag="CAG", age="AGE", gender="gender",
trans.age="logAGE",m=m, num.interp=num.interp, n=n, newl=newl,
mean.diff=mean.diff, tolerance=tolerance, itermax=itermax, iter=iter,
boot.ci=TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.