main.logist.nlme: Parametric nonlinear mixed effects model (NLME) approach:...

Description Usage Arguments Value Examples

View source: R/paraNLME_estimation.R

Description

Parametric nonlinear mixed effects model (NLME) approach: When true data are generated by the logistic model, the parametric NLME procedure is performed under the correct logistic model.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
main.logist.nlme(
  n = 80,
  model = "logist",
  dat = outdat,
  num.boot = 1000,
  true.theta1 = 1,
  true.theta3 = 6,
  time.length = 20,
  eps.sd = 0.05,
  dist = "normal",
  para1 = 3.5,
  para2 = 0.1,
  para3 = 0.1,
  para4 = 1
)

Arguments

n

number of sample size.

model

a character string for a nonlinear model: "logist" or "arctan".

dat

a data frame of the generated data set.

num.boot

number of bootsrap replicates.

true.theta1

a true parameter for theta1, which determines steepness of the logistic function, see logistft().

true.theta3

a true parameter for theta3, which determines the maximum (asymptote) of the logistic function, see logistft().

time.length

number of data points at which predictors are required for each individual longitudinal trajectory. This time point for graphs to be plotted.

eps.sd

a true scale parameter of the within-subject error term in the longitudinal model.

dist

a character string for the distribution of within-subject error term in the longitudinal model. Default is "normal".

para1

an initial parameter for theta1, which is used in function logistft() for the parametric nonlinear mixed effects model (NLME) approach.

para2

an initial intercept parameter for the inflection point theta2, which is used for the parametric nonlinear mixed effects model (NLME) approach.

para3

an initial (p-1)-length of coefficient vector of subject-specific covariates for the inflection point theta2, which is used for the parametric nonlinear mixed effects model (NLME) approach.

para4

an initial parameter for theta3, which is used in function logistft() for the parametric nonlinear mixed effects model (NLME) approach.

Value

A list of

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
library(HDChangePoint)
## Specify parameters to generate true data
n=80;
model="logist";
p=2;
bb0=0.5;
bb=0.1;
x.sd=0.3;
v1=5;
v2=7;
dist="normal";
eps.sd=0.05;
u.sd=0.05;

## generate data with seed number
set.seed(22)
outdat<-mydata(n=n, model=model, p=p, bb0=bb0, bb=bb, x.sd=x.sd,
v1=v1, v2=v2, dist=dist, eps.sd=eps.sd, u.sd=u.sd)

## Specify parameters for the parametric NLME procedure
num.boot=1000;
true.theta1=6;
true.theta3=1;
time.length=20;
eps.sd=0.05;
dist="normal";
para1=4.8;
para2=4.6;
para3=0;
para4=1;

## Do parametric NLME estimation
results<-main.logist.nlme(n=n, model=model, dat=outdat, num.boot=num.boot,
true.theta1=true.theta1, true.theta3=true.theta3, time.length=time.length, eps.sd=eps.sd, dist=dist,
para1=para1, para2=para2, para3=para3, para4=para4)

unkyunglee/HDChangePoint documentation built on Nov. 27, 2021, 2:57 p.m.