#'outputs performance at different threshold for different learning models
#'Input: benchmark result object(bmr), list of measures (fpr, tpr, ppv,mmce,f1,auc) by default
#'Output: performance graph
#'User selects the learning algorithm and the threshold by looking ata the graphs
analyseThresholdVsPerformance<-function(bmr,measures=list(fpr, tpr, ppv,mmce,f1,auc))
{
df = generateThreshVsPerfData(bmr, measures = list(fpr, tpr, ppv,mmce,f1,auc))
plotROCCurves(df)
plot<-plotThreshVsPerf(df)
return(plot)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.